Huang, J., Zhang, H., Yi, L., Funkhouser, T., Nie├čner, M., & Guibas, L. (2018). TextureNet: Consistent Local Parametrizations for Learning from High-Resolution Signals on Meshes. arXiv preprint arXiv:1812.00020.

Abstract:

We introduce, TextureNet, a neural network architec- ture designed to extract features from high-resolution sig- nals associated with 3D surface meshes (e.g., color texture maps). The key idea is to utilize a 4-rotational symmetric (4-RoSy) field to define a domain for convolution on a sur- face. Though 4-RoSy fields have several properties favor- able for convolution on surfaces (low distortion, few singu- larities, consistent parameterization, etc.), orientations are ambiguous up to 4-fold rotation at any sample point. So, we introduce a new convolutional operator invariant to the 4-RoSy ambiguity and use it in a network to extract features from high-resolution signals on geodesic neighborhoods of a surface. In comparison to alternatives, such as PointNet- based methods which lack a notion of orientation, the co- herent structure given by these neighborhoods results in sig- nificantly stronger features. As an example application, we demonstrate the benefits of our architecture for 3D semantic segmentation of textured 3D meshes. The results show that our method outperforms all existing methods on the basis of mean IoU by a significant margin in both geometry-only (6.4%) and RGB+Geometry (6.9-8.2%) settings.

Bibtex:

@article{huang2018texturenet,
  title={TextureNet: Consistent Local Parametrizations for Learning from High-Resolution Signals on Meshes},
  author={Huang, Jingwei and Zhang, Haotian and Yi, Li and Funkhouser, Thomas and Nie{ss}ner, Matthias and Guibas, Leonidas},
  journal={arXiv preprint arXiv:1812.00020},
  year={2018}
}