Yanchao Yang*, Hanxiang Ren*, He Wang, Bokui Shen, Qingnan Fan, Youyi Zheng, C. Karen Liu, Leonidas J. Guibas. ADeLA: Automatic Dense Labeling with Attention for Viewpoint Adaptation in Semantic Segmentation. CVPR 2022, Oral


We describe an unsupervised domain adaptation method for image content shift caused by viewpoint changes for a semantic segmentation task. Most existing methods perform domain alignment in a shared space and assume that the mapping from the aligned space to the output is transferable. However, the novel content induced by viewpoint changes may nullify such a space for effective alignments, thus resulting in negative adaptation. Our method works without aligning any statistics of the images between the two domains. Instead, it utilizes a view transformation network trained only on color images to hallucinate the semantic images for the target. Despite the lack of supervision, the view transformation network can still generalize to semantic images thanks to the inductive bias introduced by the attention mechanism. Furthermore, to resolve ambiguities in converting the semantic images to semantic labels, we treat the view transformation network as a functional representation of an unknown mapping implied by the color images and propose functional label hallucination to generate pseudo-labels in the target domain. Our method surpasses baselines built on state-of-the-art correspondence estimation and view synthesis methods. Moreover, it outperforms the state-of-the-art unsupervised domain adaptation methods that utilize self-training and adversarial domain alignment. Our code and dataset will be made publicly available.


  title={{ADeLA}: Automatic Dense Labeling with Attention for Viewpoint Adaptation in Semantic Segmentation},
  author={Yang, Yanchao and Ren, Hanxiang and Wang, He and Shen, Bokui and Fan, Qingnan and Zheng, Youyi and Liu, C Karen and Guibas, Leonidas},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},