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Abstract

We introduce a novel feature size for bounded planar @
mains endowed with an intrinsic metric. Given a point
in such a domairX , the homotopy feature sizef X atx, owfs
or hfs(x) for short, measures half the length of the shortg
loop throughx that is not null-homotopic iX . The resort | 2hfs®)|_
to an intrinsic metric makekfs(x) rather insensitive to the
local geometry ofX , in contrast with its predecessors (lo x*®
cal feature size, weak feature size, homology feature .size;j

This leads to a reduced number of samples that still capture ) . . . . .

the topology ofX . Under reasonable sampling conditionngre 1'. Two L'pSCh't.Z (_jlomr?lns with \;ery dlffe_reg;weak
involving hfs, we show that the geodesic Delaunay triarﬁ—Eature sizesy(fs), but similar homotopy feature sizefsfg).
gulationDx (L) of a nite samplingL of X is homotopy

equivalent toX . Moreover,Dx (L) is sandwiched betweenlar scale. Examples in data analysis include the topology es
the geodesic witness compl&€¥’ (L) and a relaxed versiontimation algorithm of [16] and the multi-scale reconstront

C;‘{‘;’ (L), de ned by a parameter. Taking advantage of thisalgorithm of [6, 27]. Both algorithms rely on the structural
fact, we prove that the homology &fx (L) (and hence of properties of thevitness complexa data structure speci -

X)) can be retrieved by computing the persistent homologglly designed by de Silva [15] for use with the landmarking
betweenCy (L) and G/ (L). We propose algorithms forstrategy. Examples in sensor networks include theo&r
estimatinghfs, selecting a landmark set of suf cient density;outing scheme and its variants [22, 21]. The idea underly-
building its geodesic Delaunay triangulation, and compuig these techniques is that the use of sparse landmarks at
ing the homology oK usingGy’ (L) andCGy! (L). We also different density levels enables us to reduce the size of the
present some simulation results in the context of senser rita structures, and to perform calculations on the inpiat da

works that corroborate our theoretical statements. set at different scales. Two questions arise naturallyh¢®)
many landmarks are necessary to capture the invariants of a
1 Introduction given objectX at a given scale? (2) what data structures

There are many situations where a topological domain $tou!d be built on top of them? , _ _
spaceX is known to us only through a nite set of sam- Manifold sampling issues have been intensively studied

ples. Understanding the global topological and geomeththe past, independently of the context of landmarking.

properties ofX through its samples is important in a vari] '€ St results in this vein were obtained by Amenta,

ety of applications, including surface parametrizatiogéa B€™M. and Eppstein, for the case wheteis a smoothly-
ometry processing, non-linear dimensionality reduction feMmPedded closed curve in the plane or surface in 3-space
manifold learning, routing and information discovery imse [1+ 2] Their bound on the landmark density depends on the

sor networks, etc. Recent advances in geometric data an'fﬁ](}‘:"l distance to the medial axis BF nX (thelocal feature

sis and in sensor networks have made an extensive use §f§: @nd & data structure built on top bfis the so-called
landmarking strategyGiven a point cloudV sampled from res'_[rlcted Delaunay triangulatian Several_exter_13|ons of

a hidden domain or spacé, the idea is to select a subsei'€Ir result have been proposed, to deal with noisy data sets
L W of landmarks, on top of which some data structure [L7]. sampled from closed manifolds of arbitrary dimension

built to encode the geometry and topologyxofat a particu- 6, 13], smoothly or non-smoothly embedded in Euqlidean
spaces [7]. In parallel, others have focused on unions of

_ o congruent Euclidean balls and their topological invasant
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values ofr, the union of the Euclidean open balls of radiusa new quantity, called theomotopy feature sizer hfs for
about the points of deformation retracts onts . short, which measures the size of the smallest topological
The above results hold only for closed manifolds. THeature (hole in this case) of the considered planar domain
presence of boundaries brings in some new issues and cKal-Speci cally, given a pointx 2 X, hfs(x) is de ned as
lenges. An interesting class of manifolds with boundargeshalf the length of the shortest loop througlthat is not null-
the one of bounded domains R, modeling the existencehomotopic inX — see Figure 1 for an illustration. In partic-
of natural obstacles to sampling certain areas. By studyar, hfs(x) is in nite wheneverx lies in a simply connected
ing the stability of distance functions to compact setRf) component ofX . In contrast with previous quantitiebfs
Chazal and others have extended the results of Nigbgl. depends essentially on the global topologyXof and it is
to a larger class of objects, including all bounded domaiasly marginally in uenced by the local geometry of the do-
X with piecewise-analytic boundaries [11]. Their bound anain boundary. Under the assumption tKahas Lipschitz
the landmark density depends on the so-calledk feature boundaries (the actual Lipschitz constant being unimporta
sizeof X, de ned as the smallest positive critical value oih our context), we show thdtfs is well-de ned, positive,
the Euclidean distance @ X This mild sampling condi- and 1-Lipschitz in the intrinsic metric. Moreover, If is a
tion makes the results of [11] valid in a very general settingeodesic'hfs-sample ofX , for some" < % then the cover
However, the weak feature size can be small compared todfieX formed by the geodesic Voronoi cells of the points of
size of the topological features ¥f, as illustrated in Figure L satis es the conditions of the Nerve theorem [8, 33], and
1 (right). As a result, many sample points are wasted satiserefore its dual Delaunay complé&xy (L) is homotopy
fying the sampling condition of [11], when very few coulagquivalent toX . By geodesic'hfs-sample ofX , we mean
suf ce to capture the topology of . In practice, this results that every poink 2 X is at a nite geodesic distance to,
in a considerable waste of memory and computation powé@ounded from above Byhfs(x). In the particular case when
The use of local/weak feature sizes in sampling a d&-is simply connected, our sampling condition only requires
main faces new challenges in certain classes of applicatitihatL have at least one point on each connected component
such as sensor networks for which the extrinsic metric is raitX , regardless of the local geometry ¥f. In the general
readily available. In a sensor network, nodes may not knoase, our sampling condition can be satis ed by placing a
their locations, nor do they have any idea of the global picenstant number of landmarks around each hol¥ pfand
ture such as whether there are holes in the network or theaumber of landmarks in the remaining partsxofthat is
nodes on the hole boundaries. The only available metridagarithmic in the ratio of the geodesic diametetXoto the
the wireless connectivity graph distances as measuredebyghodesic perimeter of its holes. This is rather independent
hop count or shortest path distance metric. This strongly nad the local geometry of the bounda@ Xand can result in
tivates us to use an intrinsic metric on the domain, instéadselecting far fewer landmarks than required by any of the
the extrinsic metric provided by the embedding for topogarlier sampling conditions that guarantee topology aaptu
ogy discovery and understanding. Intrinsic metrics have The homotopy feature size is closely related to the
been studied in the context of Riemannian manifolds witbencept of injectivity radius in Riemannian geometry. We
out boundary [30] and, from a more computational point efress this relationship in the paper, by showing that, fior a
view, in the context of the so-calladtrinsic Delaunay tri- pointx 2 X, hfs(x) is equal to the geodesic distance from
angulations (iDT) of triangulated surfaces without bougdax to its cut-locus inX . This result also suggests a simple
[5]. 2-D triangle meshes in 3-D that happen to coincide witfrocedure for estimatingfs(x) at any pointx 2 X . Using
the iDT of their vertices are known to have many attractithis procedure, we devise a greedy algorithm for generating
properties for PDE discretization [23], and generatinghsuthfs-samples of any given Lipschitz planar dom&inbased
iDT meshes is a topic of considerable interest in geometry a packing strategy. The size of the output lies within
processing [18]. a constant factor of the optimal, the constant depending
our contributions. I the f N the doubling dimension of. Our algorithm relies on
' paper we focus on the SPECI3Y 5 oracles whose actual implementations depend on the
case of bounded domains in the plane — a setting whidhp O« : pier > 4ep .
already raises numerous questions and nds importantapaflaphcatIon considered. We provide some |mplement§thns
: . . n.the context of sensor networks, based on pre-existing
cations in sensor networks. We make the novel claim tr}ﬁétributed schemes [22, 32]
resorting to an intrinsic metric instead of the Euclideari-me o .
Next, we focus on the structural properties of the so-

ric can result in very signi cant reductions in terms of the L
Called geodesic witness complean analog of the usual

number of samples required to recover the homotopy type 0 ness complex in the intrinsic metric. In many applica-

) L . . Y
a bounded domain. This is an especially appealing fact in ﬁ\wlens computindx (L) can be hard, due to the dif culty of
context of resource-constrained sensor nodes, as the mumEe ' X '

. . tc ecking whether three or more geodesic Voronoi cells have
of samples directly translates to the storage requirenment | . . o . .
a common intersection. This is especially true in sensor net

the GLIDER routing scheme [22]. To this end, we introduce



works, where the intersections between the Voronoi cellsweé write : (I; @1) ! (X;x). Note that can also be seen
the landmarks can only be sought for among the set of nodssa continuous map from the unit circleXq and we write
W, due to the lack of further information on the underlying : (S*;1)! (X;x) to specify that (1) = x.

domainX . Therefore, it is convenient to replabg (L) by Toanyloop :S*! St corresponds a unique integer
the geodesic witness compl& (L), whose computationdeg 2 Z, called thedegreeof ,suchthateg =0 if is
only requires us to perform geodesic distance comparisomspnstant mag! ! f xg, anddeg( 9 =deg +deg °
instead of locating points equidistant to multiple landksar for any loop © : S! | S! satisfying 90) = (1).
Assuming that the geodesic distance can be computed Mereover, it can be proved thaeg = deg °iff and
actly, we prove an analog of de Silva's theorem [15], whict are homotopic inSt [28, Thm. 1.7], so thatleg is
states thaC) (L) is included inDy (L) under some mild a unique descriptor of the homotopy class of the loop
sampling conditions. We also prove an analog of Lemmasimilar concept exists for loops in the plane. Given

3.1 of [27], which states that a relaxed versiorGgf (L) (in 81 RZandx 2 R?n (S%), consider the map
which a simplex is -witnessed byw if its vertices belong , = :St1 Sl where  :R?nfxg! Stisthe
to the + 1 nearest landmarks ef), denoted byd}{ (L), radial projection: x(y) = k§ ik. Since  is continuous

containsDx (L) under similar conditions. Unfortunately, agver R? n fxg,  is a continuous loop ir81. We then

pointed outin [27], itis often the case that neither of them cde ne the degree (aka winding number) ofwith respect
incides withDx (L). However, taking advantage of the faclp x as:deg, =deg . If : SI || R2nfxgisa
that Dx (L) is sandwiched betwee@ (L) and G (L), homotopy between two loops °in R2nfxg, then x s
we show that computing the persistent homology betweghomotopy between, and , %in S?, and therefore
G’ (L) andCY (L) gives the homology oDx (L). This we havedeg, =deg( x )=deg( x 9=deg, °
allows us to retrieve the homology of without comput- . )
ing Dx (L) in practice. Similar results have been proved fchO%OLLlARY 2'21' For any pointx 2 R _amZ:l any loops
other types of Itrations [12, 14] and used in the contextof - > ! RN fx%that are homotopic wfél nfxg, we
sensor networks [26]. However, to the best of our knowj2vedeg, = deg, o In particular, if or “is constant,
edge, our result is the rst one of this type for the witnedgendeg. =deg, “=0.
complex ltration. . . .

Finally, remark that when a bounded planar domain ll_sength structures and Lipschitz planar domains. A

iven explicitly with its embedding, its topology is capddr good introduction to length spaces can be found in [9,
give PICIEY W : 9 pology " Chap. 2]. Every subseét of R? inherits a length structure
by its medial axis [4], and it can be computed ef cientl

. e om R?, where admissible paths are all continuous paths
by extracting homotopy bases [19, 20]. The work in this’, X, apd where the length of a pathis de ned by:

paper gives a way of extracting and learning the topology.of’ no1

the domain through its intrinsic geodesic metric, withdwet t? 1~ supf i< 9E( (_t‘); (tisn)); 0 2 N.; 0 =1
. . ty tn = 1g; the supremum being taken over
need for a geometric embedding. o A . :
all decompositions of into an arbitrary ( nite) number of
> The intrinsic metric mtervals._We clearly havpj =jj. lHowever,J j is not
. . 5 _always nite. Take for instance Koch's snow ake, a fractal
Let! = [0;1]. The ambient space B, endowed With ¢ypye de ned as the limit of a sequence of polygonal curves

the Euclidean metric, notede . Given a subseX of R?,in the plane. It can be easily shown that, at each iteration of
X, X, and@X stand respectively for the interior, closurgne construction, the length of the curve is multipliedhy
and boundary oK. Givenx 2 R“andr 2 R+, BE(X;I') 5o that the length of the limit curve is in nite. We say that

denotes the Euclidean open ball of radiugboutx. Finally, .| 1 X is arecti able path if its lengthj jis nite.

S',R f 0g, andR?, denote respectively the unit circle, the  \we makeX into a length space by de ning dntrinsic

abcissa line, and the closed upper half-plan@in (or geodesir metricdy as follows:8x;y 2 X, dx (X;y) =
infff j; 11 X; (0)=x (1) = yg, the inmum

Paths and loops. Given a topological spacé, apathin X  being taken over all paths from to y in X. Clearly,
isacontinuousmap! X. Foralla;b2 1 (a b),wecall dx(x;y) = + 1 wheneverx;y belong to different path-
jlab) the paths 7! (a+ s(b a)), which can be viewed connected components ¥f. However, the converse is not
as the restriction of to the segmenfa;b]. In addition,  always true. Take for instance a domafn made of two
denotes the inverse pash7! (1 s). Given another path disjoint disks connected by Koch's snow ake:xfy belong
O:1 1 X suchthat q0) = (1), we call Otheir to different disks, then all curves connectirngandy go
concatenation, denedby 9Ys)= (2s)for0 s % through Koch's snow ake and therefore have in nite length.
and As) = Y2s 1) for % s 1. Given a point As a consequence, the intrinsic topology inducedlyon
x 2 X, aloopthroughx in X is a path in X that starts and X can be different from the Euclidean topology induced by

ends atx, i.e. such that (0) = (1) = x. For simplicity, dg. This is a critical issue because the geodesic Voronoi



diagram is bound to the intrinsic metric, whereas our goalrisighborhood as above. However, De nition 2.1 provides us
to retrieve the homotopy type of in the extrinsic metric. with a neighborhood/; and a Lipschitz homeomorphism
Another issue is that not all pairs of pointsy 2 X with suchthat , *(Vx\ X)is convex. Then, inside, 1(Vy\ X),

dx (X;y) < +1 may have a shortest path X, i.e. a we can deform any given arc into a recti able arc, whose
path  : I ! X suchthat (0) = x, (1) = vy, and image through y is recti able and included irX .

j ] =dx(x;y). Take for instance two diametral points on

the boundary of the unit closed disk, to which the clos& The homotopy feature size

disk of radius; has been removed. These issues lead Us3@riniTioN 3.1. Given a Lipschitz planar domaik and
consider the special case of Lipschitz domains: a pointx 2 X, the homotopy feature sizef X at x

is the quantity: hfs(x) = % inffj j; c (st

DEFINITION 2.1. A Lipschitz planar domaiis a compact .
b P P (X;x) non null-homotopic irX g.

embedded topological 2-submanifold Rf with Lipschitz
boundary. Formally, it is a compact subsét of R* such  ag jjustrated in Figure 1, the resort to the intrinsic metri

that, for all pointx 2 @X there exists a neighborhoodyakes the homotopy feature size rather insensitive to the
Vy in R? and a Lipschitz homeomorphism : R? I R?, 0. geometry of the domaix .

such that x(0) = x, x(R f 0g)\ Vx = @X\ V, and

(RZ2)\ Ve = X\ V. LEMMA 3.1. LetX be a Lipschitz planar domain.
(i) Given a pointx 2 X, if the path-connected compo-

Observe that, for any neighborhodd® Vi, we also nent of X that containsx is simply connected, then
have «(0) = x, «(R f 0g)\ Vo= @x\ V2 and hfs(x) = + 1 . Else,hfs(x) < +1 , and there exists

x(RZ)\ V¢ = X\ V2 Therefore,Vx can be assumed a non null-homotopic recti able loop : (S;1) !
to be arbitrarily small. Moreover, sincg (0) = x and  is (X;x) such thathfs(x) = %j j>o.
continuous, , *(Vx) is a neighborhood of the origin iR?,  (ji) The mapx 7! hfs(x) is 1-Lipschitz in the intrinsic
hence it contains an open Euclidean dislabout the origin. metric. As a consequence, it is continuous for the
By taking (B) as the new neighborhodd , we ensure that Euclidean topology, by Theorem 2.1, ahf$(X ) =

« H(X\ V) is the intersection oR? with the open disiB, inff hfs(x); x 2 X gis positive.

and therefore that it is convex.

Note that the actual Lipschitz constants of the chagts The proof of assertion (i) considers an arbitrary sequence
in De nition 2.1 are unimportant: only the fact that thg ©f non null-homotopic recti able loops throughk, whose
are Lipschitz counts. This makes the class of Lipschitz plgndths converge towards hfs(x), and it applies Theorem
nar domains quite large: in particular, it contains all pian2.1 (ii) to this sequence. The proof of assertion (ii) takes t
domains with piecewise-analytic boundaries. Moreovaer, tROINtsX; Y lying in a same path-connected componenXof
pathologies described above cannot occur on a Lipschitz &t is not simply connected, and it considers the non null-

main, by the following theorem: homotopic loop x throughx provided by assertion (i), as
well as a shortest pathfromy tox. Then, = X
THEOREM2.1. For any Lipschitz planar domaiK , is a non null-homotopic recti able loop through of length
(i) the intrinsic topology coincides with the Euclidean j = 2 hfs(x) + 2 dx (x;y). It follows that hfs(y)
topology onX ; %j yi = hfs(x) +d x (X;y).

(i) every sequence of paths with uniformly bounded ] . )
length contains a uniformly converging subsequendeEMMA 3.2. Let X be a Lipschitz planar domain. For
therefore, all points;y 2 X such thatdy (x;y) < all point x 2 X every loop |r_15|_de the geodesic open ball
+1 have a shortest path i ; Bx (x; hfs(x)) is null-homotopic inX .

(iii) for any path @ I I X and any real number The proof is omitted in this abstract. Intuitively, a geddes
" > 0, there exists a rectiable path- : 1 ! pa) of centerx and radius less thanfs(x) cannot enclose
X, homotopic to  relative' to @lin X, such that gny hole ofX , therefore every loop inside such a ball must be
Maxsz| Mingz; dx (-~ (s); (1)) <". null-homotopic inX . Note that Lemma 3.2 does not imply

The proof of the theorem is given in the full version of thEbat Bx (X; hfs(x))' itself is cont'ractlble. This fact is true
paper [25]. It relies on the following facts: given a poin@evertheless, but its proof requires some more work.
x 2 X, there is a small convex neighborhodd X inside
which any given arc can be continuously deformed into%a Structural results
recti able arc. Now, given a poirnt 2 @X there is no such Given a Lipschitz planar domaid, and a set of landmarks

L X that is dense enough with respect to the homotopy
" TThis means that the homotopy between and is constant over feature size oK, we show in Section 4.1 that the geodesic
@I= f0;1g. Delaunay triangulatioDy (L) is homotopy equivalent t¥



(Theorem 4.1), and in Section 4.2 tiia (L) is sandwiched dx ( (s);x), wheredy (g; (s)) < dx (p; (8)) | jos))
between the geodesic witness comp@ (L) and its re- anddx ( (s);X) j iis;1)- Hence, we havely (q;x) <
laxed versioﬁ;‘{‘{ (L), for any set of witnesse& X that | jjo.s)j + ] jis:u1) = J ] = dx (p; %), which contradicts the
is dense enough compareditidTheorems 4.3 and 4.4).  assumption that 2 Vx (p). Therefore, (I) V x (p). This
shows thaw/x (p) is path-connected.
4.1 Geodesic Delaunay triangulation.Consider a do- Assume now for a contradiction thaty (p) is not
mainX  R? and a nite set of sited¢ X . Thegeodesic simply connected. Then, sina& (p) X is a bounded
Voronoi cellof a sitep is the locus of the points 2 X sat- subset ofR?, its complement irR? has at least two path-
isfying dx (x;p)  dx (x;q) forall g 2 L. Thegeodesic connected components, only one of which is unbounded, by
Voronoi diagramof L in X, or Vx (L) for short, is the cellu- the Alexander duality — seeg.[28, Thm. 3.44]. LeH be a
lar decomposition oX formed by the geodesic Voronoi cellshounded path-connected componenRéfn V (p). H can
of the sites. The nerve &fx (L) is called thegeodesic De- be viewed as a hole ¥y (p). We claim thatH is included
launay triangulationof L in X , notedDy (L). The face of in X . Indeed, consider a loop: S ! V x (p) that winds

Vx (L) dual to a given simplex 2 Dx (L) is notedVy ( ).
Consider now a Lipschitz planar domain and a nite
set of sitesL X that is ageodesic'hfs-sampleof X,

for some" < 1. This means that, for all point 2 X,

aroundH —such aloop exists siné¢ is bounded by (p).
Take any poinx 2 Vx (p). For ally 2 Vx (p), we have
dx (x;y)  dx (X p) +dx(p;y) " hfs(x)+ " hfs(y),
which is at most#—hfs(x) sincehfs is 1-Lipschitz in the
intrinsic metric (Lemma 3.1 (ii)). Thu&/x (p) isincluded in

the geodesic distance from to L is nite and at most
" hfs(x). Note thatL has at least one point in every paththe geodesic closed baly (X; 12— hfs(x)),where% <1
connected component &f, because geodesic distance& tosjnce " < % Therefore, : S | V x(p) is null-
are required to be nite. We will see how to generate sugfomotopic inX, by Lemma 3.2. Let : St | | X
point sets in Section 5.2. be a homotopy betweenand a constant map X . For any
pointz 2 H, we havedeg, 6 O since the loop winds
aroundH . If z did not belong to( S* 1), then would be
a homotopy between and a constant map R? n f zg, thus
by Corollary 2.1 we would havdeg, = 0, thereby raising
The rest of Section 4.1 is devoted to the proof of Theoresrcontradiction. Hence( S 1) contains all the points of
4.1, which uses the Nerve theorem: holeH , which is therefore included iX .

THEOREMA4.2. (FROM[8, 33]) Let U be a nite closed It follows that the hole is caused by the presence of

. ) . ome sites of. n fpg, whose geodesic Voronoi cells form
cover of X, such that the intersection of any collection ? Pg g

elements ol is either empty or contractible. Then, the ner\c)g' Assumg without loss of generﬁlltylhat there is only
. ) ne such siteg. We haveVyx (q) =
of U is homotopy equivalent {4 .

THEOREMA4.1. If X is a Lipschitz planar domain, and lif
is a geodesithfs-sample oKX , for some' < % thenDy (L)
andX are homotopy equivalent.

H, and @H =
Vx (@) \V x (p). Consider the Euclidean rd; g), and call
In our case, we selt) to be the collection of the geodesic its rst point of intersection with@Hbeyondg. Line
Voronoi cells: U = fVx (p); p 2 Lg. The nerve of this segmentq;x] is included inH X, therefore we have
collection is precisely the geodesic Delaunay triangatatidx (X;d) = d e (X; g), which yields:dx (x;p)  de (X;p) =
Dx (L). Thus, Theorem 4.2 reduces the proof of Theoreth (X; ) + de(q;p = dx (x;q) + de(q;p > dx (x;0):
4.1 to showing that the intersection of any arbitrary numbeéhis contradicts the fact thatbelongs to@ Hand hence to
of cells of Vi (L) is empty or contractible. We rst showVx (p). Thus,Vx (p) is simply connected. Since it is also
that the geodesic Voronoi cells are contractible: path-connected, it is contractible.

LEMMA 4.1. Under the hypotheses of Theorem 4.1, every By very similar arguments, we can prove that the union
cell of Vi (L) is contractible. of any two intersecting cells o¥x (L) is contractible. It
follows then from Lemma 4.1 and from the following classi-

Proof. Let p 2 L. We rst show thatVx (p) is path- cal result of algebraic topology that their intersectioalso
connected. Letx 2 Vx(p), andlet : 1 ! X be contractible:

a shortest path fronp to x in X. Such a path exists
by Theorem 2.1 (ii), sincex andp lie in the same path- L
connected component of, dx (x;p) being nite due to
the fact thatL is a geodesic¢ hfs-sample ofX . We will
show that (1) V x(p). Assume for a contradiction that
(s) 2V (p) for somes 2 | . This means that there exists a
pointg 2 L nfpg such thady ( (s);q) < dx ( (s);p). By
the triangle inequality, we hawx (q;x) dx (q; (s)) +

EMMA 4.2.

(i) The intersection of ani¢ simply connected subsets of
R? is either empty or simply connected.

(i) If X;Y are path-connected subsets Rf such that
X [ Y is simply connected, thefi\ Y is either empty
or path-connected.

We will now extend the above results to the intersections of



L the intrinsic metric. The proof uses the same machinery asin
1 % ot [3], and it relies on the intuitive fact that, when the ket a
geodesic'hfs-sample ofX , the geodesic distances between
a pointx 2 X and itsk nearest landmarks in the intrinsic

i * ke metric are at most<" hfs(x), the exponent coming from the
1 . , fact thathfs is 1-Lispchitz.
oG 1 )ET THEOREMA4.3. LetX be a Lipschitz planar domain, ard
5 a geodesi¢ hfs-sample ofX . If " -, for some integer
T 1 1 1 k 0, then thek-skeleton of5)Y (L) is included inDyx (L)
forallW X.

Figure 2: The size ofcp;  ;kgis g times that of p; p,

although both point sets are sparse geodefsisamples. Our next result is an analog of Theorem 3.2 of [27], whose

proof relies on a simple packing argument. It involves a
arbitrary numbers of cells dfx (p), thereby concluding therelaxed version of the witness complex, de ned as follows.
proof of Theorem 4.1: Given an integer 0, a simplex is -witnessed by

w 2 W if the vertices of belong to the + 1 landmarks
LEMMA 4.3. Under the hypotheses of Theorem 4.1, for aRyysest taw in the intrinsic metric. The geodesiewitness
k sitespy; pc 2 L, the IntersectionV (P \ N\ complex ofL relative toW, or CY (L) for short, is the
Vx (px) is either empty or contractible. maximum abstract simplicial complex made ofvitnessed

Proof. The proof is by induction ok. Casesk = 1 and simplices. Its dimension is at most

k = 2 have just been proved. Assume now that the réeHEOREM4.4. Let X be a Lipschitz planar domain, of
sult is true up to somé 2, and considek + 1 sites doubling dimensiord. Let W be a geodesic hfs-sample
p1; iPk+1 2 L suchthavx (p1)\  \WV x(pk+1) 6 ;. of X, and L a geodesic'hfs-sample ofX that is also

Notice .Irst thatVx (p1) \ \V x (pk+1) is the intersec- —hfs-sparse. If" +2 < 1, then, for any integer

tion of * £, Vx (p) with Vx (ps1 ), which by the induc- pd+1 & 2)0 ") Dy (L) isincluded inGY (L).
tion hypothesis are simply connected. Hence, their interse ) . ’ .
tion Vx (p1) \ \V x (pks1) is also simply connected,]—;‘fe theorlem 1>(:zssurr:jer? thiatis ta;]l;—,.hfs—spa_rse]c Ige(zjdeSﬁ
by Lemma 4.2 (i). Observe now that :(=1 Ve () s-sample ofX , which means that every pair of landmarks

T p; q satis es: dx (p; Q) l+— minf hfs(p); hfs(g)g. The

Vx (pk+1) can be rewritten as ikzl (Vx (P) [V x (pk+1)). lower bound on depends on theloubling dimensiorof

By the induction hypothesis (more precisely, according (X; dx ), which is de ned as the smallest integdrsuch

the cas&k = 2), e\ﬁeryvx (pi) [V x (pk+1) is simply con- that every geodesic closed ball can be covered by a union
nected, hence so isikzl (Vx (p1) [V x (Pxs1)), by Lemma of 29 geodesic closed balls of half its radius. The doubling
4.2 (i). It follows then from Lemma 4.2 (ii) that the intersecdimension measures the shape complexityXaf and it
tion Vx (p1) \ —\V x (pc+1) is path-connected, since bycan be arbitrarily large. An example is given in Figure 2,
induction both :(:1 Vy (pi) andVy (pes1) are, and since Where thek geodesic ballx (q; 1) are included in their

their union is simply connected. respective branches, and therefore are disjoint. Morgover
they are packed inside the bdly (p;3), which therefore

4.2 Geodesic witness complexConsider a domaiix requires at leask geodesic unit balls to be covered, by a

R2, as well as two nite subsets andW. Given a point result of [29]. Itfollows that the doubling dimension Xfis

w 2 W and a simplex = [po; ;p] with vertices in at least; log, k, which can be made arbitrarily large.

L, wis awitnessof if forall i = 0; I, dx (w;p;) It follows from Theorems 4.3 and 4.4 that, wheneler

is nite and bounded from above by (w; g) for everyq 2 and W are dense enougix (L) is sandwiched between

Lnfpe;  ;pig. Observe tha may only witness simplices & (L) andGy (L), provided that is chosen suf cienly

whose vertices lie in the same path-connected componerfgge. Our simulation results — see Section 6 — suggest that

X . The geodesic witness complex L relative tow, or €ven small values of suf ce in practice.

CY (L) for short, is the maximal abstract simplicial complex _

with vertices inL, whose faces are witnessed by points & Algorithms

W. The fact thatG) (L) is an abstract simplicial complexWe will now describe high-level procedures for computing

means that a simplex belongs to the complex only if all itds, for generating geodesltfs-samples, and for comput-

faces do. In the sequély will be referred to as the set ofing the homology of a Lipschitz planar domain. Our algo-

witnesses, and as the set of landmarks. rithms rely essentially on two oracles, whose implementa-
Our rstresultis an analog of de Silva's theorem [15] iions depend on the application considered.



5.1 Computing the homotopy feature size As pointed in the path-connected componentofcontainingp. There-
out by Erickson and Whittlesey for Riemannian surfacésre,L is a geodesithfs-sample oiX . Furthermore,
[20], the homotopy feature size is closely related to the R . .
concept of cut-locus. Given a path: | | X, we call LEmmMA 5.2. For all " 2]0; 1], the algorithm terminates,

trajectory of the set (I). If is a shortest path betweergnd the size its output is withifl %2 times the size

trajectory between andy. Given a pointx 2 X, the cut- dimension oX .

Ioc_us ofx in X_’ or CLx (x) for S_“‘?rt' is the lOCUS_Of thE_’The proof, omitted in this abstract, relies on a simple pagki
points of X having at least two distinct shortest trajectorleérgumem_ The in uence of the doubling dimensionf
tox in X. The geodesic distance frorto its cut-locus is is illustrated in Figure 2, wher® = fp:plg andQ =

denoted bydx (x; CLx (x))- fou; ;gcgare geodesibfs-samples oK , becauséfs(x)

LEMMA 5.1. If X is a Lipschitz planar domain, the8x 2 is e"egyWhere at Ieas_t half the peri_met_er O..f a hOIG’. n_amely
X, hfs(x) = d x (X; CLx (X)). 2+ 55 AlthoughQ is hfs-sparse, its size iQj = 3 jP],
wherek is of the order oR?, as emphasized in Section 4.2.
The proof is omitted in this abstract. Lemma 5.1 suggests a
simple way of estimatingpfs: given a pointx 2 X, grow a 5.3 Computing the homology of a Lipschitz domain.
geodesic closed ball aboutx, starting with a radius of zeroGiven a geodesi¢hfs-sampleL of a Lipschitz planar do-
and ending wheiB covers the path-connected componentain X, a variant of the procedure of Section 5.1 can be
Xx of X containingx. Meanwhile, focus on the wavefrontused to buildDy (L): grow geodesic balls around the points
@Bas the radius 0B increases — this wavefront evolvesf L at same speed, and report the intersections between the
as the iso-level sets of the magp7! dx (x;y). If at some fronts. The homology oDy (L) gives then the homology
stage the wavefrorgelf-intersectsi.e. if there is a point of X, by Theorem 4.1. But in many practical situatiois,
y 2 @Bwith two or more distinct shortest trajectoriestp is only known through a nite samplingV, which makes
then interrupt the process and return the current valueeof thhard to detect the intersections between more than two
radius ofB . Else, stop onc8 coversXy and return+ 1 . fronts. In this discrete setting, it is relevant to replale t
By detecting the rst self-intersection event in the groweonstruction oDx (L) by the ones o€ (L) andCGY! (L),
ing process, the procedure nds a point ©fLx (x) clos- which only require to compare geodesic distances at the
est tox in the intrinsic metric, and therefore it returngoints ofW. The homology oDy (L) can then be computed
dx (x; CLx (X)), which by Lemma 5.1 is equal tofs(x). via the persistent homology betwe€ff (L) andC‘X"{ (L).
The procedure relies on two oracles: one that checks whether More precisely, we use simplicial homology with co-
B covers Xy entirely, the other that checks whether thef cients in a eld, which in practice will beZ=2 — omit-
wavefront self-intersects at a given value of the radiuB pf ted in our notations. The inclusion map: CY (L) |
or rather between two given values of the radiug of C‘K"’ (L) induces a homomorphism : H, (CY (L)) !
_ _ _ _ Hy, (C‘A";’ (L)). By applying the persistence algorithm [34]
5.2 Generating geodesic'hfs-samples. Given a Lips- ig the [tration CY¥(L) ! C W (L), we can compute the
chitz planar domairX and a parametet > O, we US€ & rank of i . Thus, the goal is to relate thenk i to
greedy packing strategy to generate geodebfs-samples gim H, (D (L)), the kth Betti number ofDx (L). We
of X . Initially, our algorithm selects an arbitrary poipt2  know from Theorems 4.3 and 4.4 @l (L) D x (L)
X and setd. = fpg. It al:_;o assigns tp the geodesip OPENCY (L) under some sampling conditions, which we will as-
paIIBp of c_enterpand radiusg - hfs(p),wherehfs(p) IS€S- sume from now on. The inclusion maps: cy(L) )
timated usllng.the prpcedure of Section 5.1hfE(p) =+ 1 , Dx (L) andj® : Dx (L) ! C ¥ (L) induce homomor-
thenB.p.comudes with the pa}th—cqnnected componer%of hismsj , j© on the homology groups, such that =
containingp. Then, at e%ch iteration, the algorithm selec}so i) =j° j . Itfollows thatdimH, (Dx (L))

an arbitrary poing 2 X n .5, Bp, and itinserts this point -, j® ranki ,which means that evekrcycle that per-

inL. It also assigns a geodesic open @Ito q, as detailed sists betwee (L) andC¥ (L) is a non-trivialk-cycle of
above fop. The process stops wheéhn —,| By = ;. Dy (L). In fact, we even have:

The algorithm uses a variant of an oracle of Section 5.1,
which can tell whether a given union of geodesic balls covefsiEOREM5.1. Assume that the hypotheses of Theorems 4.3
X, and return a point outside the union in the negative. Upand 4.4 are satis ed, wittk = |, L W, and with
termination, every point 2 X lies in some closed baB ,, hfs replaced byminf hfs; dy g, wheredy is the Euclidean
and we havely (x;L) dx (x;p) 1+— hfs(p), which distance to the medial axi¥l of R? n X . Then, the range
is at most" hfs(x) sincehfs is 1-Lipschitz in the intrinsic space of is isomorphic toH, (Dx (L)). In other words,
metric. Moreoverdy (x; p) is nite becauseB, is included we haveranki =dim H, (Dx (L)).



This theorem guarantees that the persistent homology be-
tweenCY (L) andCY (L) gives the homology obx (L).
The bounds on the densities of landmarks and witnesses de-
pend ondy, which requires tham \ X = ;. This is true
if X has smooth boundaries, but als@ifXonly has convex
corners (oriented outwards). The fact thdis anddy are (a)n=217,d 7:66," =0:5 =2, weighted distance.
both 1-Lipschitz in the intrinsic metrigimplies that the den- A ; ]
sities deep inside the domajit can be small, although they
may have to be large ne@ X :-
The proof of Theorem 5.1, omitted in this abstract, ¢
proceeds in two steps: rst it shows thdtis injective, then
it shows thaj is surjective. It follows from the injectivity
of j° thatdimH, (Dx (L)) = rank j°, which is equal to
rank i by the surjectivity of .

(b) n=217,d 7:66, "=0:25 =2, welghted dlstance.
Figure 3: From left to right: withess complex, relaxed
witness complex, persistence barcode of the Itration [10]

6 Application to sensor networks

We have implemented the algorithms of Section 5 in the con Y
text of sensor networks, where the nodes do not have ger;
graphic locations, and where the intrinsic metric is approx
mated by the hop-count distance in the connectivity graph ( &= N R O

unit disk graph in our case). The quality of the distance ap- (a)n = 353 d 7:66, "=0:5 =2, weighted distance
proximation can be guaranteed, provided that the node delx . 3 ;
sity is suf ciently high [25]. B

Homotopy feature size computation. Given a nodex,
we estimate the geodesic distance xofto its cut-locus,
which by Lemma 5.1 is equal tofs(x). Wanget al. [32] i h

proposed a distributed algorithm for detecting the cutigc ~ (P)n =353,d 7:66' "=0:25 =2, weighted distance.
which works as follows: the node sends a ood messageFigure 4: Same setting as above, with a higher node density.
with initial hop count 1; each node receiving the message

forwards it after incrementing the hop count. Thus, evenpdes are uncovered. They wait for different random periods
node learns its minimum hop count to the nad&@ hen, each of time, after which they promote themselves to the status of
pair of neighbors check whether their least common ancederdmark. Each new landmark oods the network, computes
(LCA) is at hop-count distance at leaktlf so, then they also its homotopy feature size, and informs all the nodes within
check whether their two shortest paths to the LCA contdia geodesic ball to be covered. Thus, every node eventually
nodes at leasdd away from each other (by looking at trge becomes covered or a landmark itself.

ring neighborhoods of the nodes of the paths). Every pair The witness complex is computed in a similar way as
satisfying these conditions is called a cut pair. As provénl[22]. The selected landmarks ood the network, and ev-
in [32], every hole of perimeter greater thdryields a cut ery node records its minimum hop counts to them. With this
pair. Then, every cut node checks its neighbors, and ifiriformation, it determines which simplices it witnesses. A
has the minimum hop count, then it reports back taith round of information aggregation collects all the simpdice
the hop count value. Thus, gets a report from one nodeand constructs the witness complex. In a planar setting,
on each connected component of the cut-locus, and leantere only the Betti numbersy, and 1 are non-zero, we
the homotopy feature size as the minimum hop value. Foorly need to build the 2-skeleton of the witness complex.
weighted graph, the operation is similar. Therefore, each node may store only its three nearest land-
marks, and it may avoid forwarding messages from other

Landmark selection and witness complex computa- | dmarks, which reduces the message complexity.
tion. The landmark selection implements the mcrementg{1

algorithm of Section 5.2 in a distributed manner. A nodsimulation results and discussion. Figures 3 to 7 present

has two statessoveredanduncovered A covered node lies some simulation results showing the dependency of the

inside the geodesic ball of some landmark. Initially, a# thandmark selection and homology computation on various
parameters. We usedsensor nodes randomly distributed in

"~ ZSincedy is 1-Lipschitz in the Euclidean metric, it is aldoLipschitz @ Lipschitz planar domain. Two nodes within unit Euclidean

in the intrinsic metric, becausk:  dy . distance of each other are connected. The resulting average

114 12 13 14 15 16 17 18 18 2

D1 111213 14 1516 17 18 19 2



_ i wo_ . _ . . S o
(@)n=353,d 7:66," =0:85 =2,weighted distance. ()" = %, random landmark selection outside,, Bp.

(b)n=353,d 7:66," =0:15 =2, weighted distance. iy (L)
()
Figure 7: Landmark sets obtained by two different packing

strategies, and their geodesic witness complexes.

S _
(b)y" = % insertion ofargmaxf azwn ., Bpg

between the witness complex and its relaxed version gives
the homology of the domain. Thus, only the intrinsic
geometry of the domain matters, not the scale of the
network, as long as the latter remains suf ciently dense.
Landmark densityFigure 5 shows our results on the same
setup as above, with (8)= 0:85and (b)" = 0:15. In the
rst case, only two holes are captured, because of the low
landmark density. In the second case, three non-genuine
holes are not destroyed in the relaxed witness complex,
because the value of the relaxation parametés too
Figure 5: Effect of varying versus the landmark density.  small given the relatively low node density. Increasing
from 2 to 4 produces the correct answer (c). But setting
to too high avalue (=11, " = 0:25) destroys some of
the genuine holes (d). Throughout our experiments, the
algorithm produced correct results with small values of
( 4), provided that the nodes and landmarks sets were
(a)n=217,d 7:66," =0:5, =2, hop-count distance. reasonably dense. .This demonstrates lthe practicality of
our approach, despite the large theoretical bounds stated
in Theorems 4.3, 4.4 and 5.1.
Weighted graph distance vs. hop-count distan&énce
the hop-count distance is a poorer approximation to the
geodesic distance, the range of value$ tifat work with
. _ it is reduced. In Figure 6 for instance, the scheme works
(byn=217,d 7:66," =0:25 =2, hop-count distance. well with " = 0:5, but not with" = 0:25, in contrast with
Figure 6: Same setting as above, with the weighted distancehe results of Figure 3.
replaced by the hop-count distance. Packing strategy.Figure 7 shows some of our sampling

. L . ) results. It appears that different packing strategies can
node degree is notatl The intrinsic metric is approximated produce samples of very different sizes, as predicted

by the graph dlstan_ce in the _connectmty network, where by Lemma 5.2. Maximizing the ratigﬁf(q”-) at each
each edge can be either unweighted (hop-count distance) Orte ation seems 1o be a very effective st Sa(tq) in practice
weighted by its Euclidean length (weighted distance). leration s S avery ctive strategy In practice,

. . . o but it is also time-consuming.
and 'Rguri %Szr;_)ovﬁ gott)rl]p(l:(;asleixinr:lgihewggnﬁ)n ; g 'hSc)Ie'go conclude, let us emphasize that our approach turned out

persist and are therefore identi ed as non-triviatycles in to be also quite robust under more realistic communication
the geodesic Delaunay triangulation models, such as quasi-unit disk graph with link failures.

Node densityWe vary the number of nodes from 217 t&ossible extensions. This work focuses on the planar
355. The average degree remains the same. The resadte, with applications in sensor networks. A natural ex-
is shown in Figure 4. Again, the persistent homologgnsion would be to consider bounded domains in higher-

(c)n=353,d 7:66," =0:15 =4, weighted distance.

(dyn=353,d 7:66," =0:25, weighted distance. Left:
witness complex; Middle: = 2; Right: =11.



dimensional Euclidean spaces, with applications in raisoti16] V. de Silva and G. Carlsson. Topological estimation using
and geometric data analysis. Also, it would be relevant to witness complexes. IRroc. Sympos. Point-Based Graphics
generate homology bases whose elements isolate the various Pages 157-166, 2004.

holes ofX . There exists some work along this line, but for EL7] T. K. Dey and S. Goswami. Provable surface reconstruction
slightly different context [24].
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