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Abstract

We introduce a novel feature size for bounded planar do-
mains endowed with an intrinsic metric. Given a pointx
in such a domainX , the homotopy feature sizeof X at x,
or hfs(x) for short, measures half the length of the shortest
loop throughx that is not null-homotopic inX . The resort
to an intrinsic metric makeshfs(x) rather insensitive to the
local geometry ofX , in contrast with its predecessors (lo-
cal feature size, weak feature size, homology feature size).
This leads to a reduced number of samples that still capture
the topology ofX . Under reasonable sampling conditions
involving hfs, we show that the geodesic Delaunay trian-
gulation DX (L ) of a �nite samplingL of X is homotopy
equivalent toX . Moreover,DX (L ) is sandwiched between
the geodesic witness complexCW

X (L ) and a relaxed version
CW

X;� (L ), de�ned by a parameter� . Taking advantage of this
fact, we prove that the homology ofDX (L ) (and hence of
X ) can be retrieved by computing the persistent homology
betweenCW

X (L ) andCW
X;� (L ). We propose algorithms for

estimatinghfs, selecting a landmark set of suf�cient density,
building its geodesic Delaunay triangulation, and comput-
ing the homology ofX usingCW

X (L ) andCW
X;� (L ). We also

present some simulation results in the context of sensor net-
works that corroborate our theoretical statements.

1 Introduction

There are many situations where a topological domain or
spaceX is known to us only through a �nite set of sam-
ples. Understanding the global topological and geometric
properties ofX through its samples is important in a vari-
ety of applications, including surface parametrization inge-
ometry processing, non-linear dimensionality reduction for
manifold learning, routing and information discovery in sen-
sor networks, etc. Recent advances in geometric data analy-
sis and in sensor networks have made an extensive use of a
landmarking strategy. Given a point cloudW sampled from
a hidden domain or spaceX , the idea is to select a subset
L � W of landmarks, on top of which some data structure is
built to encode the geometry and topology ofX at a particu-
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Figure 1: Two Lipschitz domains with very different weak
feature sizes (wfs), but similar homotopy feature sizes (hfs).

lar scale. Examples in data analysis include the topology es-
timation algorithm of [16] and the multi-scale reconstruction
algorithm of [6, 27]. Both algorithms rely on the structural
properties of thewitness complex, a data structure speci�-
cally designed by de Silva [15] for use with the landmarking
strategy. Examples in sensor networks include the GLIDER

routing scheme and its variants [22, 21]. The idea underly-
ing these techniques is that the use of sparse landmarks at
different density levels enables us to reduce the size of the
data structures, and to perform calculations on the input data
set at different scales. Two questions arise naturally: (1)how
many landmarks are necessary to capture the invariants of a
given objectX at a given scale? (2) what data structures
should be built on top of them?

Manifold sampling issues have been intensively studied
in the past, independently of the context of landmarking.
The �rst results in this vein were obtained by Amenta,
Bern, and Eppstein, for the case whereX is a smoothly-
embedded closed curve in the plane or surface in 3-space
[1, 2]. Their bound on the landmark density depends on the
local distance to the medial axis ofR2 nX (thelocal feature
size), and a data structure built on top ofL is the so-called
restricted Delaunay triangulation. Several extensions of
their result have been proposed, to deal with noisy data sets
[17], sampled from closed manifolds of arbitrary dimensions
[6, 13], smoothly or non-smoothly embedded in Euclidean
spaces [7]. In parallel, others have focused on unions of
congruent Euclidean balls and their topological invariants,
which can be computed via the dual complex – known as the
�Cech complex. In a seminal paper [31], Niyogiet al. proved
that, if X is a smoothly-embedded closed manifold andL
a dense enough sampling ofX , then, for a wide range of



values ofr , the union of the Euclidean open balls of radiusr
about the points ofL deformation retracts ontoX .

The above results hold only for closed manifolds. The
presence of boundaries brings in some new issues and chal-
lenges. An interesting class of manifolds with boundaries is
the one of bounded domains inRn , modeling the existence
of natural obstacles to sampling certain areas. By study-
ing the stability of distance functions to compact sets inRn ,
Chazal and others have extended the results of Niyogiet al.
to a larger class of objects, including all bounded domains
X with piecewise-analytic boundaries [11]. Their bound on
the landmark density depends on the so-calledweak feature
sizeof X , de�ned as the smallest positive critical value of
the Euclidean distance to@X. This mild sampling condi-
tion makes the results of [11] valid in a very general setting.
However, the weak feature size can be small compared to the
size of the topological features ofX , as illustrated in Figure
1 (right). As a result, many sample points are wasted satis-
fying the sampling condition of [11], when very few could
suf�ce to capture the topology ofX . In practice, this results
in a considerable waste of memory and computation power.

The use of local/weak feature sizes in sampling a do-
main faces new challenges in certain classes of applications
such as sensor networks for which the extrinsic metric is not
readily available. In a sensor network, nodes may not know
their locations, nor do they have any idea of the global pic-
ture such as whether there are holes in the network or the
nodes on the hole boundaries. The only available metric is
the wireless connectivity graph distances as measured by the
hop count or shortest path distance metric. This strongly mo-
tivates us to use an intrinsic metric on the domain, instead of
the extrinsic metric provided by the embedding for topol-
ogy discovery and understanding. Intrinsic metrics have
been studied in the context of Riemannian manifolds with-
out boundary [30] and, from a more computational point of
view, in the context of the so-calledintrinsic Delaunay tri-
angulations (iDT) of triangulated surfaces without boundary
[5]. 2-D triangle meshes in 3-D that happen to coincide with
the iDT of their vertices are known to have many attractive
properties for PDE discretization [23], and generating such
iDT meshes is a topic of considerable interest in geometry
processing [18].

Our contributions. In the paper we focus on the special
case of bounded domains in the plane — a setting which
already raises numerous questions and �nds important appli-
cations in sensor networks. We make the novel claim that
resorting to an intrinsic metric instead of the Euclidean met-
ric can result in very signi�cant reductions in terms of the
number of samples required to recover the homotopy type of
a bounded domain. This is an especially appealing fact in the
context of resource-constrained sensor nodes, as the number
of samples directly translates to the storage requirement in
the GLIDER routing scheme [22]. To this end, we introduce

a new quantity, called thehomotopy feature size, or hfs for
short, which measures the size of the smallest topological
feature (hole in this case) of the considered planar domain
X . Speci�cally, given a pointx 2 X , hfs(x) is de�ned as
half the length of the shortest loop throughx that is not null-
homotopic inX – see Figure 1 for an illustration. In partic-
ular,hfs(x) is in�nite wheneverx lies in a simply connected
component ofX . In contrast with previous quantities,hfs
depends essentially on the global topology ofX , and it is
only marginally in�uenced by the local geometry of the do-
main boundary. Under the assumption thatX has Lipschitz
boundaries (the actual Lipschitz constant being unimportant
in our context), we show thathfs is well-de�ned, positive,
and1-Lipschitz in the intrinsic metric. Moreover, ifL is a
geodesic"hfs-sample ofX , for some" < 1

3 , then the cover
of X formed by the geodesic Voronoi cells of the points of
L satis�es the conditions of the Nerve theorem [8, 33], and
therefore its dual Delaunay complexDX (L ) is homotopy
equivalent toX . By geodesic"hfs-sample ofX , we mean
that every pointx 2 X is at a �nite geodesic distance toL ,
bounded from above by" hfs(x). In the particular case when
X is simply connected, our sampling condition only requires
thatL have at least one point on each connected component
of X , regardless of the local geometry ofX . In the general
case, our sampling condition can be satis�ed by placing a
constant number of landmarks around each hole ofX , and
a number of landmarks in the remaining parts ofX that is
logarithmic in the ratio of the geodesic diameter ofX to the
geodesic perimeter of its holes. This is rather independent
of the local geometry of the boundary@Xand can result in
selecting far fewer landmarks than required by any of the
earlier sampling conditions that guarantee topology capture.

The homotopy feature size is closely related to the
concept of injectivity radius in Riemannian geometry. We
stress this relationship in the paper, by showing that, for all
point x 2 X , hfs(x) is equal to the geodesic distance from
x to its cut-locus inX . This result also suggests a simple
procedure for estimatinghfs(x) at any pointx 2 X . Using
this procedure, we devise a greedy algorithm for generating
"hfs-samples of any given Lipschitz planar domainX , based
on a packing strategy. The size of the output lies within
a constant factor of the optimal, the constant depending
on the doubling dimension ofX . Our algorithm relies on
two oracles whose actual implementations depend on the
application considered. We provide some implementations
in the context of sensor networks, based on pre-existing
distributed schemes [22, 32].

Next, we focus on the structural properties of the so-
called geodesic witness complex, an analog of the usual
witness complex in the intrinsic metric. In many applica-
tions, computingDX (L ) can be hard, due to the dif�culty of
checking whether three or more geodesic Voronoi cells have
a common intersection. This is especially true in sensor net-



works, where the intersections between the Voronoi cells of
the landmarks can only be sought for among the set of nodes
W , due to the lack of further information on the underlying
domainX . Therefore, it is convenient to replaceDX (L ) by
the geodesic witness complexCW

X (L ), whose computation
only requires us to perform geodesic distance comparisons,
instead of locating points equidistant to multiple landmarks.
Assuming that the geodesic distance can be computed ex-
actly, we prove an analog of de Silva's theorem [15], which
states thatCW

X (L ) is included inDX (L ) under some mild
sampling conditions. We also prove an analog of Lemma
3.1 of [27], which states that a relaxed version ofCW

X (L ) (in
which a simplex is� -witnessed byw if its vertices belong
to the� + 1 nearest landmarks ofw), denoted byCW

X;� (L ),
containsDX (L ) under similar conditions. Unfortunately, as
pointed out in [27], it is often the case that neither of them co-
incides withDX (L ). However, taking advantage of the fact
that DX (L ) is sandwiched betweenCW

X (L ) and CW
X;� (L ),

we show that computing the persistent homology between
CW

X (L ) andCW
X;� (L ) gives the homology ofDX (L ). This

allows us to retrieve the homology ofX without comput-
ing DX (L ) in practice. Similar results have been proved for
other types of �ltrations [12, 14] and used in the context of
sensor networks [26]. However, to the best of our knowl-
edge, our result is the �rst one of this type for the witness
complex �ltration.

Finally, remark that when a bounded planar domain is
given explicitly with its embedding, its topology is captured
by its medial axis [4], and it can be computed ef�ciently
by extracting homotopy bases [19, 20]. The work in this
paper gives a way of extracting and learning the topology of
the domain through its intrinsic geodesic metric, without the
need for a geometric embedding.

2 The intrinsic metric

Let I = [0 ; 1]. The ambient space isR2, endowed with
the Euclidean metric, noteddE . Given a subsetX of R2,
�X , X , and@X, stand respectively for the interior, closure,
and boundary ofX . Givenx 2 R2 andr 2 R+ , BE (x; r )
denotes the Euclidean open ball of radiusr aboutx. Finally,
S1, R � f 0g, andR2

+ , denote respectively the unit circle, the
abcissa line, and the closed upper half-plane inR2.

Paths and loops.Given a topological spaceX , apathin X
is a continuous mapI ! X . For alla; b2 I (a � b), we call
 j [a;b] the paths 7!  (a + s(b � a)) , which can be viewed
as the restriction of to the segment[a; b]. In addition, �
denotes the inverse paths 7!  (1 � s). Given another path
 0 : I ! X such that 0(0) =  (1), we call  �  0 their
concatenation, de�ned by �  0(s) =  (2s) for 0 � s � 1

2
and �  0(s) =  0(2s � 1) for 1

2 � s � 1. Given a point
x 2 X , aloopthroughx in X is a path in X that starts and
ends atx, i.e. such that (0) =  (1) = x. For simplicity,

we write : (I; @I) ! (X; x ). Note that can also be seen
as a continuous map from the unit circle toX , and we write
 : (S1; 1) ! (X; x ) to specify that (1) = x.

To any loop : S1 ! S1 corresponds a unique integer
deg 2 Z, called thedegreeof  , such thatdeg = 0 if  is
a constant mapS1 ! f xg, anddeg( �  0) = deg  + deg  0

for any loop  0 : S1 ! S1 satisfying  0(0) =  (1).
Moreover, it can be proved thatdeg = deg  0 iff  and
 0 are homotopic inS1 [28, Thm. 1.7], so thatdeg is
a unique descriptor of the homotopy class of the loop .
A similar concept exists for loops in the plane. Given
 : S1 ! R2 and x 2 R2 n  (S1), consider the map
 x = � x �  : S1 ! S1, where� x : R2 n f xg ! S1 is the
radial projection:� x (y) = y � x

ky � x k . Since� x is continuous
over R2 n f xg,  x is a continuous loop inS1. We then
de�ne the degree (aka winding number) of with respect
to x as: degx  = deg  x . If � : S1 � I ! R2 n f xg is a
homotopy between two loops;  0 in R2 nf xg, then� x � � is
a homotopy between� x �  and� x �  0 in S1, and therefore
we have:degx  = deg(� x �  ) = deg( � x �  0) = degx  0.

COROLLARY 2.1. For any pointx 2 R2 and any loops
;  0 : S1 ! R2 n f xg that are homotopic inR2 n f xg, we
havedegx  = degx  0. In particular, if  or  0 is constant,
thendegx  = degx  0 = 0 .

Length structures and Lipschitz planar domains. A
good introduction to length spaces can be found in [9,
Chap. 2]. Every subsetX of R2 inherits a length structure
from R2, where admissible paths are all continuous paths
I ! X , and where the length of a path is de�ned by:
j j = supf

P n � 1
i =0 dE ( (t i );  (t i +1 )) ; n 2 N; 0 = t0 �

t1 � � � � � tn = 1g; the supremum being taken over
all decompositions ofI into an arbitrary (�nite) number of
intervals. We clearly havej� j = j j. However,j j is not
always �nite. Take for instance Koch's snow�ake, a fractal
curve de�ned as the limit of a sequence of polygonal curves
in the plane. It can be easily shown that, at each iteration of
the construction, the length of the curve is multiplied by4

3 ,
so that the length of the limit curve is in�nite. We say that
 : I ! X is arecti�able path if its lengthj j is �nite.

We makeX into a length space by de�ning anintrinsic
(or geodesic) metricdX as follows:8x; y 2 X , dX (x; y) =
inf fj  j;  : I ! X;  (0) = x;  (1) = yg, the in�mum
being taken over all paths fromx to y in X . Clearly,
dX (x; y) = + 1 wheneverx; y belong to different path-
connected components ofX . However, the converse is not
always true. Take for instance a domainX made of two
disjoint disks connected by Koch's snow�ake: ifx; y belong
to different disks, then all curves connectingx and y go
through Koch's snow�ake and therefore have in�nite length.
As a consequence, the intrinsic topology induced bydX on
X can be different from the Euclidean topology induced by
dE . This is a critical issue because the geodesic Voronoi



diagram is bound to the intrinsic metric, whereas our goal is
to retrieve the homotopy type ofX in the extrinsic metric.
Another issue is that not all pairs of pointsx; y 2 X with
dX (x; y) < + 1 may have a shortest path inX , i.e. a
path  : I ! X such that (0) = x,  (1) = y, and
j j = d X (x; y). Take for instance two diametral points on
the boundary of the unit closed disk, to which the closed
disk of radius1

2 has been removed. These issues lead us to
consider the special case of Lipschitz domains:

DEFINITION 2.1. A Lipschitz planar domainis a compact
embedded topological 2-submanifold ofR2 with Lipschitz
boundary. Formally, it is a compact subsetX of R2 such
that, for all point x 2 @X, there exists a neighborhood
Vx in R2 and a Lipschitz homeomorphism� x : R2 ! R2,
such that� x (0) = x, � x (R � f 0g) \ Vx = @X\ Vx , and
� x (R2

+ ) \ Vx = X \ Vx .

Observe that, for any neighborhoodV 0
x � Vx , we also

have � x (0) = x, � x (R � f 0g) \ V 0
x = @X\ V 0

x , and
� x (R2

+ ) \ V 0
x = X \ V 0

x . Therefore,Vx can be assumed
to be arbitrarily small. Moreover, since� x (0) = x and� x is
continuous,� � 1

x (Vx ) is a neighborhood of the origin inR2,
hence it contains an open Euclidean diskB about the origin.
By taking� (B ) as the new neighborhoodVx , we ensure that
� � 1

x (X \ Vx ) is the intersection ofR2
+ with the open diskB ,

and therefore that it is convex.
Note that the actual Lipschitz constants of the charts� x

in De�nition 2.1 are unimportant: only the fact that the� x

are Lipschitz counts. This makes the class of Lipschitz pla-
nar domains quite large: in particular, it contains all planar
domains with piecewise-analytic boundaries. Moreover, the
pathologies described above cannot occur on a Lipschitz do-
main, by the following theorem:

THEOREM 2.1. For any Lipschitz planar domainX ,
(i) the intrinsic topology coincides with the Euclidean

topology onX ;
(ii) every sequence of paths with uniformly bounded

length contains a uniformly converging subsequence;
therefore, all pointsx; y 2 X such thatdX (x; y) <
+ 1 have a shortest path inX ;

(iii) for any path  : I ! X and any real number
" > 0, there exists a recti�able path " : I !
X , homotopic to relative1 to @I in X , such that
maxs2 I mint 2 I dX ( " (s);  (t)) < " .

The proof of the theorem is given in the full version of the
paper [25]. It relies on the following facts: given a point
x 2 �X , there is a small convex neighborhoodVx � X inside
which any given arc can be continuously deformed into a
recti�able arc. Now, given a pointx 2 @X, there is no such

1This means that the homotopy between " and  is constant over
@I= f 0; 1g.

neighborhood as above. However, De�nition 2.1 provides us
with a neighborhoodVx and a Lipschitz homeomorphism� x

such that� � 1
x (Vx \ X ) is convex. Then, inside� � 1

x (Vx \ X ),
we can deform any given arc into a recti�able arc, whose
image through� x is recti�able and included inX .

3 The homotopy feature size

DEFINITION 3.1. Given a Lipschitz planar domainX and
a point x 2 X , the homotopy feature sizeof X at x
is the quantity: hfs(x) = 1

2 inf fj  j;  : (S1; 1) !
(X; x ) non null-homotopic inX g.

As illustrated in Figure 1, the resort to the intrinsic metric
makes the homotopy feature size rather insensitive to the
local geometry of the domainX .

LEMMA 3.1. LetX be a Lipschitz planar domain.
(i) Given a pointx 2 X , if the path-connected compo-

nent ofX that containsx is simply connected, then
hfs(x) = + 1 . Else,hfs(x) < + 1 , and there exists
a non null-homotopic recti�able loop : (S1; 1) !
(X; x ) such thathfs(x) = 1

2 j j > 0.
(ii) The mapx 7! hfs(x) is 1-Lipschitz in the intrinsic

metric. As a consequence, it is continuous for the
Euclidean topology, by Theorem 2.1, andhfs(X ) =
inf f hfs(x); x 2 X g is positive.

The proof of assertion (i) considers an arbitrary sequence
of non null-homotopic recti�able loops throughx, whose
lengths converge towards2 hfs(x), and it applies Theorem
2.1 (ii) to this sequence. The proof of assertion (ii) takes two
pointsx; y lying in a same path-connected component ofX
that is not simply connected, and it considers the non null-
homotopic loop x throughx provided by assertion (i), as
well as a shortest path from y to x. Then, y =  �  x � �
is a non null-homotopic recti�able loop throughy, of length
j y j = 2 hfs(x) + 2 d X (x; y). It follows that hfs(y) �
1
2 j y j = hfs( x) + d X (x; y).

LEMMA 3.2. Let X be a Lipschitz planar domain. For
all point x 2 X , every loop inside the geodesic open ball
BX (x; hfs(x)) is null-homotopic inX .

The proof is omitted in this abstract. Intuitively, a geodesic
ball of centerx and radius less thanhfs(x) cannot enclose
any hole ofX , therefore every loop inside such a ball must be
null-homotopic inX . Note that Lemma 3.2 does not imply
that BX (x; hfs(x)) itself is contractible. This fact is true
nevertheless, but its proof requires some more work.

4 Structural results

Given a Lipschitz planar domainX , and a set of landmarks
L � X that is dense enough with respect to the homotopy
feature size ofX , we show in Section 4.1 that the geodesic
Delaunay triangulationDX (L ) is homotopy equivalent toX



(Theorem 4.1), and in Section 4.2 thatDX (L ) is sandwiched
between the geodesic witness complexCW

X (L ) and its re-
laxed versionCW

X;� (L ), for any set of witnessesW � X that
is dense enough compared toL (Theorems 4.3 and 4.4).

4.1 Geodesic Delaunay triangulation.Consider a do-
mainX � R2 and a �nite set of sitesL � X . Thegeodesic
Voronoi cellof a sitep is the locus of the pointsx 2 X sat-
isfying dX (x; p) � dX (x; q) for all q 2 L . The geodesic
Voronoi diagramof L in X , or VX (L ) for short, is the cellu-
lar decomposition ofX formed by the geodesic Voronoi cells
of the sites. The nerve ofVX (L ) is called thegeodesic De-
launay triangulationof L in X , notedDX (L ). The face of
VX (L ) dual to a given simplex� 2 D X (L ) is notedVX (� ).

Consider now a Lipschitz planar domainX , and a �nite
set of sitesL � X that is ageodesic"hfs-sampleof X ,
for some" < 1

3 . This means that, for all pointx 2 X ,
the geodesic distance fromx to L is �nite and at most
" hfs(x). Note thatL has at least one point in every path-
connected component ofX , because geodesic distances toL
are required to be �nite. We will see how to generate such
point sets in Section 5.2.

THEOREM 4.1. If X is a Lipschitz planar domain, and ifL
is a geodesic"hfs-sample ofX , for some" < 1

3 , thenDX (L )
andX are homotopy equivalent.

The rest of Section 4.1 is devoted to the proof of Theorem
4.1, which uses the Nerve theorem:

THEOREM 4.2. (FROM [8, 33]) Let U be a �nite closed
cover ofX , such that the intersection of any collection of
elements ofU is either empty or contractible. Then, the nerve
of U is homotopy equivalent toX .

In our case, we setU to be the collection of the geodesic
Voronoi cells: U = fV X (p); p 2 Lg. The nerve of this
collection is precisely the geodesic Delaunay triangulation
DX (L ). Thus, Theorem 4.2 reduces the proof of Theorem
4.1 to showing that the intersection of any arbitrary number
of cells of VX (L ) is empty or contractible. We �rst show
that the geodesic Voronoi cells are contractible:

LEMMA 4.1. Under the hypotheses of Theorem 4.1, every
cell ofVX (L ) is contractible.

Proof. Let p 2 L . We �rst show that VX (p) is path-
connected. Letx 2 VX (p), and let  : I ! X be
a shortest path fromp to x in X . Such a path exists
by Theorem 2.1 (ii), sincex and p lie in the same path-
connected component ofX , dX (x; p) being �nite due to
the fact thatL is a geodesic"hfs-sample ofX . We will
show that (I ) � V X (p). Assume for a contradiction that
 (s) =2 VX (p) for somes 2 I . This means that there exists a
point q 2 L n f pg such thatdX ( (s); q) < dX ( (s); p). By
the triangle inequality, we havedX (q; x) � dX (q;  (s)) +

dX ( (s); x), wheredX (q;  (s)) < dX (p;  (s)) � j  j [0;s] j
and dX ( (s); x) � j  j [s;1] j. Hence, we havedX (q; x) <
j j [0;s] j + j j [s;1] j = j j = d X (p; x), which contradicts the
assumption thatx 2 VX (p). Therefore, (I ) � V X (p). This
shows thatVX (p) is path-connected.

Assume now for a contradiction thatVX (p) is not
simply connected. Then, sinceVX (p) � X is a bounded
subset ofR2, its complement inR2 has at least two path-
connected components, only one of which is unbounded, by
the Alexander duality – seee.g.[28, Thm. 3.44]. LetH be a
bounded path-connected component ofR2 n VX (p). H can
be viewed as a hole inVX (p). We claim thatH is included
in X . Indeed, consider a loop : S1 ! V X (p) that winds
aroundH – such a loop exists sinceH is bounded byVX (p).
Take any pointx 2 VX (p). For all y 2 VX (p), we have
dX (x; y) � dX (x; p) + d X (p; y) � " hfs(x) + " hfs(y),
which is at most 2"

1� " hfs(x) sincehfs is 1-Lipschitz in the
intrinsic metric (Lemma 3.1 (ii)). Thus,VX (p) is included in
the geodesic closed ballBX (x; 2"

1� " hfs(x)) , where 2"
1� " < 1

since " < 1
3 . Therefore,  : S1 ! V X (p) is null-

homotopic inX , by Lemma 3.2. Let� : S1 � I ! X
be a homotopy between and a constant map inX . For any
point z 2 H , we havedegz  6= 0 since the loop winds
aroundH . If z did not belong to�( S1 � I ), then� would be
a homotopy between and a constant map inR2 n f zg, thus
by Corollary 2.1 we would havedegz  = 0 , thereby raising
a contradiction. Hence,�( S1 � I ) contains all the points of
holeH , which is therefore included inX .

It follows that the hole is caused by the presence of
some sites ofL n f pg, whose geodesic Voronoi cells form
H . Assume without loss of generality that there is only
one such siteq. We haveVX (q) = H , and @H =
VX (q) \ V X (p). Consider the Euclidean ray[p; q), and call
x its �rst point of intersection with@Hbeyondq. Line
segment[q; x] is included inH � X , therefore we have
dX (x; q) = d E (x; q), which yields:dX (x; p) � dE (x; p) =
dE (x; q) + d E (q; p) = d X (x; q) + d E (q; p) > dX (x; q):
This contradicts the fact thatx belongs to@Hand hence to
VX (p). Thus,VX (p) is simply connected. Since it is also
path-connected, it is contractible.�

By very similar arguments, we can prove that the union
of any two intersecting cells ofVX (L ) is contractible. It
follows then from Lemma 4.1 and from the following classi-
cal result of algebraic topology that their intersection isalso
contractible:

LEMMA 4.2.
(i) The intersection of anyk simply connected subsets of

R2 is either empty or simply connected.
(ii) If X; Y are path-connected subsets ofR2 such that

X [ Y is simply connected, thenX \ Y is either empty
or path-connected.

We will now extend the above results to the intersections of
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Figure 2: The size off q1; � � � ; qk g is k
2 times that off p; p0g,

although both point sets are sparse geodesichfs-samples.

arbitrary numbers of cells ofVX (p), thereby concluding the
proof of Theorem 4.1:

LEMMA 4.3. Under the hypotheses of Theorem 4.1, for any
k sitesp1; � � � ; pk 2 L, the intersectionVX (p1) \ � � � \
VX (pk ) is either empty or contractible.

Proof. The proof is by induction onk. Casesk = 1 and
k = 2 have just been proved. Assume now that the re-
sult is true up to somek � 2, and considerk + 1 sites
p1; � � � ; pk+1 2 L such thatVX (p1) \ � � � \ V X (pk+1 ) 6= ; .
Notice �rst that VX (p1) \ � � � \ V X (pk+1 ) is the intersec-
tion of

T k
i =1 VX (pi ) with VX (pk+1 ), which by the induc-

tion hypothesis are simply connected. Hence, their intersec-
tion VX (p1) \ � � � \ V X (pk+1 ) is also simply connected,

by Lemma 4.2 (i). Observe now that
� T k

i =1 VX (pi )
�

[

VX (pk+1 ) can be rewritten as
T k

i =1 (VX (pi ) [ V X (pk+1 )) .
By the induction hypothesis (more precisely, according to
the casek = 2 ), everyVX (pi ) [ V X (pk+1 ) is simply con-
nected, hence so is

T k
i =1 (VX (pi ) [ V X (pk+1 )) , by Lemma

4.2 (i). It follows then from Lemma 4.2 (ii) that the intersec-
tion VX (p1) \ � � � \ V X (pk+1 ) is path-connected, since by
induction both

T k
i =1 VX (pi ) and VX (pk+1 ) are, and since

their union is simply connected.�

4.2 Geodesic witness complex.Consider a domainX �
R2, as well as two �nite subsetsL andW . Given a point
w 2 W and a simplex� = [ p0; � � � ; pl ] with vertices in
L , w is a witnessof � if for all i = 0 ; � � � ; l , dX (w; pi )
is �nite and bounded from above bydX (w; q) for everyq 2
L nf p0; � � � ; pl g. Observe thatw may only witness simplices
whose vertices lie in the same path-connected component of
X . The geodesic witness complexof L relative toW , or
CW

X (L ) for short, is the maximal abstract simplicial complex
with vertices inL , whose faces are witnessed by points of
W . The fact thatCW

X (L ) is an abstract simplicial complex
means that a simplex belongs to the complex only if all its
faces do. In the sequel,W will be referred to as the set of
witnesses, andL as the set of landmarks.

Our �rst result is an analog of de Silva's theorem [15] in

the intrinsic metric. The proof uses the same machinery as in
[3], and it relies on the intuitive fact that, when the setL is a
geodesic"hfs-sample ofX , the geodesic distances between
a pointx 2 X and itsk nearest landmarks in the intrinsic
metric are at most4k " hfs(x), the exponent coming from the
fact thathfs is 1-Lispchitz.

THEOREM 4.3. LetX be a Lipschitz planar domain, andL
a geodesic"hfs-sample ofX . If " � 1

4k +1 , for some integer
k � 0, then thek-skeleton ofCW

X (L ) is included inDX (L )
for all W � X .

Our next result is an analog of Theorem 3.2 of [27], whose
proof relies on a simple packing argument. It involves a
relaxed version of the witness complex, de�ned as follows.
Given an integer� � 0, a simplex� is � -witnessed by
w 2 W if the vertices of� belong to the� + 1 landmarks
closest tow in the intrinsic metric. The geodesic� -witness
complex ofL relative toW , or CW

X;� (L ) for short, is the
maximum abstract simplicial complex made of� -witnessed
simplices. Its dimension is at most� .

THEOREM 4.4. Let X be a Lipschitz planar domain, of
doubling dimensiond. Let W be a geodesic� hfs-sample
of X , and L a geodesic"hfs-sample ofX that is also

"
1+ " hfs-sparse. If" + 2 � < 1, then, for any integer� �

2d+1 (1+ � =" )(1+ " )
1� " � 2� , DX (L ) is included inCW

X;� (L ).

The theorem assumes thatL is a "
1+ " hfs-sparse geodesic

"hfs-sample ofX , which means that every pair of landmarks
p; q satis�es: dX (p; q) � "

1+ " minf hfs(p); hfs(q)g. The
lower bound on� depends on thedoubling dimensionof
(X; dX ), which is de�ned as the smallest integerd such
that every geodesic closed ball can be covered by a union
of 2d geodesic closed balls of half its radius. The doubling
dimension measures the shape complexity ofX , and it
can be arbitrarily large. An example is given in Figure 2,
where thek geodesic ballsBX (qi ; 1) are included in their
respective branches, and therefore are disjoint. Moreover,
they are packed inside the ballBX (p;3), which therefore
requires at leastk geodesic unit balls to be covered, by a
result of [29]. It follows that the doubling dimension ofX is
at least12 log2 k, which can be made arbitrarily large.

It follows from Theorems 4.3 and 4.4 that, wheneverL
and W are dense enough,DX (L ) is sandwiched between
CW

X (L ) andCW
X;� (L ), provided that� is chosen suf�cienly

large. Our simulation results – see Section 6 – suggest that
even small values of� suf�ce in practice.

5 Algorithms

We will now describe high-level procedures for computing
hfs, for generating geodesic"hfs-samples, and for comput-
ing the homology of a Lipschitz planar domain. Our algo-
rithms rely essentially on two oracles, whose implementa-
tions depend on the application considered.



5.1 Computing the homotopy feature size.As pointed
out by Erickson and Whittlesey for Riemannian surfaces
[20], the homotopy feature size is closely related to the
concept of cut-locus. Given a path : I ! X , we call
trajectory of the set (I ). If  is a shortest path between
x =  (0) and y =  (1), then  (I ) is called a shortest
trajectory betweenx andy. Given a pointx 2 X , the cut-
locus of x in X , or CLX (x) for short, is the locus of the
points ofX having at least two distinct shortest trajectories
to x in X . The geodesic distance fromx to its cut-locus is
denoted bydX (x; CLX (x)) .

LEMMA 5.1. If X is a Lipschitz planar domain, then8x 2
X , hfs(x) = d X (x; CLX (x)) .

The proof is omitted in this abstract. Lemma 5.1 suggests a
simple way of estimatinghfs: given a pointx 2 X , grow a
geodesic closed ballB aboutx, starting with a radius of zero
and ending whenB covers the path-connected component
X x of X containingx. Meanwhile, focus on the wavefront
@Bas the radius ofB increases – this wavefront evolves
as the iso-level sets of the mapy 7! dX (x; y). If at some
stage the wavefrontself-intersects, i.e. if there is a point
y 2 @Bwith two or more distinct shortest trajectories tox,
then interrupt the process and return the current value of the
radius ofB . Else, stop onceB coversX x and return+ 1 .

By detecting the �rst self-intersection event in the grow-
ing process, the procedure �nds a point ofCLX (x) clos-
est to x in the intrinsic metric, and therefore it returns
dX (x; CLX (x)) , which by Lemma 5.1 is equal tohfs(x).
The procedure relies on two oracles: one that checks whether
B coversX x entirely, the other that checks whether the
wavefront self-intersects at a given value of the radius ofB ,
or rather between two given values of the radius ofB .

5.2 Generating geodesic"hfs-samples.Given a Lips-
chitz planar domainX and a parameter" > 0, we use a
greedy packing strategy to generate geodesic"hfs-samples
of X . Initially, our algorithm selects an arbitrary pointp 2
X and setsL = f pg. It also assigns top the geodesic open
ball Bp of centerp and radius "

1+ " hfs(p), wherehfs(p) is es-
timated using the procedure of Section 5.1. Ifhfs(p) = + 1 ,
thenBp coincides with the path-connected component ofX
containingp. Then, at each iteration, the algorithm selects
an arbitrary pointq 2 X n

S
p2 L B p, and it inserts this point

in L . It also assigns a geodesic open ballBq to q, as detailed
above forp. The process stops whenX n

S
p2 L B p = ; .

The algorithm uses a variant of an oracle of Section 5.1,
which can tell whether a given union of geodesic balls covers
X , and return a point outside the union in the negative. Upon
termination, every pointx 2 X lies in some closed ballB p,
and we havedX (x; L ) � dX (x; p) � "

1+ " hfs(p), which
is at most" hfs(x) sincehfs is 1-Lipschitz in the intrinsic
metric. Moreover,dX (x; p) is �nite becauseBp is included

in the path-connected component ofX containingp. There-
fore,L is a geodesic"hfs-sample ofX . Furthermore,

LEMMA 5.2. For all " 2 ]0; 1[, the algorithm terminates,
and the size its output is within2d 3+3 " +2 " 2

1� " times the size
of any geodesic"hfs-sample ofX , whered is the doubling
dimension ofX .

The proof, omitted in this abstract, relies on a simple packing
argument. The in�uence of the doubling dimension ofX
is illustrated in Figure 2, whereP = f p; p0g and Q =
f q1; � � � ; qk g are geodesichfs-samples ofX , becausehfs(x)
is everywhere at least half the perimeter of a hole, namely
2 + 2

2k � 1 . AlthoughQ is hfs-sparse, its size isjQj = k
2 jP j,

wherek is of the order of2d, as emphasized in Section 4.2.

5.3 Computing the homology of a Lipschitz domain.
Given a geodesic"hfs-sampleL of a Lipschitz planar do-
main X , a variant of the procedure of Section 5.1 can be
used to buildDX (L ): grow geodesic balls around the points
of L at same speed, and report the intersections between the
fronts. The homology ofDX (L ) gives then the homology
of X , by Theorem 4.1. But in many practical situations,X
is only known through a �nite samplingW , which makes
it hard to detect the intersections between more than two
fronts. In this discrete setting, it is relevant to replace the
construction ofDX (L ) by the ones ofCW

X (L ) andCW
X;� (L ),

which only require to compare geodesic distances at the
points ofW . The homology ofDX (L ) can then be computed
via the persistent homology betweenCW

X (L ) andCW
X;� (L ).

More precisely, we use simplicial homology with co-
ef�cients in a �eld, which in practice will beZ=2 – omit-
ted in our notations. The inclusion mapi : CW

X (L ) ,!
CW

X;� (L ) induces a homomorphismi � : H �
k (CW

X (L )) !
H �

k (CW
X;� (L )) . By applying the persistence algorithm [34]

to the �ltration CW
X (L ) ,! C W

X;� (L ), we can compute the
rank of i � . Thus, the goal is to relate therank i � to
dim H �

k (DX (L )) , the kth Betti number ofDX (L ). We
know from Theorems 4.3 and 4.4 thatCW

X (L ) � D X (L ) �
CW

X;� (L ) under some sampling conditions, which we will as-
sume from now on. The inclusion mapsj : CW

X (L ) ,!
DX (L ) and j 0 : DX (L ) ,! C W

X;� (L ) induce homomor-
phisms j � , j 0

� on the homology groups, such thati � =
(j 0 � j ) � = j 0

� � j � . It follows that dim H �
k (DX (L )) �

rank j 0
� � rank i � , which means that everyk-cycle that per-

sists betweenCW
X (L ) andCW

X;� (L ) is a non-trivialk-cycle of
DX (L ). In fact, we even have:

THEOREM 5.1. Assume that the hypotheses of Theorems 4.3
and 4.4 are satis�ed, withk = � , L � W , and with
hfs replaced byminf hfs; dM g, wheredM is the Euclidean
distance to the medial axisM of R2 n X . Then, the range
space ofi � is isomorphic toH �

k (DX (L )) . In other words,
we have:rank i � = dim H �

k (DX (L )) .



This theorem guarantees that the persistent homology be-
tweenCW

X (L ) andCW
X;� (L ) gives the homology ofDX (L ).

The bounds on the densities of landmarks and witnesses de-
pend ondM , which requires thatM \ X = ; . This is true
if X has smooth boundaries, but also if@Xonly has convex
corners (oriented outwards). The fact thathfs anddM are
both1-Lipschitz in the intrinsic metric2 implies that the den-
sities deep inside the domainX can be small, although they
may have to be large near@X.

The proof of Theorem 5.1, omitted in this abstract,
proceeds in two steps: �rst it shows thatj 0

� is injective, then
it shows thatj � is surjective. It follows from the injectivity
of j 0

� that dim H �
k (DX (L )) = rank j 0

� , which is equal to
rank i � by the surjectivity ofj � .

6 Application to sensor networks

We have implemented the algorithms of Section 5 in the con-
text of sensor networks, where the nodes do not have geo-
graphic locations, and where the intrinsic metric is approxi-
mated by the hop-count distance in the connectivity graph (a
unit disk graph in our case). The quality of the distance ap-
proximation can be guaranteed, provided that the node den-
sity is suf�ciently high [25].

Homotopy feature size computation. Given a nodex,
we estimate the geodesic distance ofx to its cut-locus,
which by Lemma 5.1 is equal tohfs(x). Wanget al. [32]
proposed a distributed algorithm for detecting the cut-locus,
which works as follows: the nodex sends a �ood message
with initial hop count 1; each node receiving the message
forwards it after incrementing the hop count. Thus, every
node learns its minimum hop count to the nodex. Then, each
pair of neighbors check whether their least common ancestor
(LCA) is at hop-count distance at leastd. If so, then they also
check whether their two shortest paths to the LCA contain
nodes at leastd away from each other (by looking at thed

2 -
ring neighborhoods of the nodes of the paths). Every pair
satisfying these conditions is called a cut pair. As proved
in [32], every hole of perimeter greater thand yields a cut
pair. Then, every cut node checks its neighbors, and if it
has the minimum hop count, then it reports back tox with
the hop count value. Thus,x gets a report from one node
on each connected component of the cut-locus, and learns
the homotopy feature size as the minimum hop value. For a
weighted graph, the operation is similar.

Landmark selection and witness complex computa-
tion. The landmark selection implements the incremental
algorithm of Section 5.2 in a distributed manner. A node
has two states,coveredanduncovered. A covered node lies
inside the geodesic ball of some landmark. Initially, all the

2SincedM is 1-Lipschitz in the Euclidean metric, it is also1-Lipschitz
in the intrinsic metric, becausedE � dX .

(a)n = 217, d � 7:66, " = 0 :5, � = 2 , weighted distance.

(b) n = 217, d � 7:66, " = 0 :25, � = 2 , weighted distance.

Figure 3: From left to right: witness complex, relaxed
witness complex, persistence barcode of the �ltration [10].

(a)n = 353, d � 7:66, " = 0 :5, � = 2 , weighted distance.

(b) n = 353, d � 7:66, " = 0 :25, � = 2 , weighted distance.

Figure 4: Same setting as above, with a higher node density.

nodes are uncovered. They wait for different random periods
of time, after which they promote themselves to the status of
landmark. Each new landmark �oods the network, computes
its homotopy feature size, and informs all the nodes within
its geodesic ball to be covered. Thus, every node eventually
becomes covered or a landmark itself.

The witness complex is computed in a similar way as
in [22]. The selected landmarks �ood the network, and ev-
ery node records its minimum hop counts to them. With this
information, it determines which simplices it witnesses. A
round of information aggregation collects all the simplices
and constructs the witness complex. In a planar setting,
where only the Betti numbers� 0 and � 1 are non-zero, we
only need to build the 2-skeleton of the witness complex.
Therefore, each node may store only its three nearest land-
marks, and it may avoid forwarding messages from other
landmarks, which reduces the message complexity.

Simulation results and discussion. Figures 3 to 7 present
some simulation results showing the dependency of the
landmark selection and homology computation on various
parameters. We usedn sensor nodes randomly distributed in
a Lipschitz planar domain. Two nodes within unit Euclidean
distance of each other are connected. The resulting average



(a)n = 353, d � 7:66, " = 0 :85, � = 2 , weighted distance.

(b) n = 353, d � 7:66, " = 0 :15, � = 2 , weighted distance.

(c) n = 353, d � 7:66, " = 0 :15, � = 4 , weighted distance.

(d) n = 353, d � 7:66, " = 0 :25, weighted distance. Left:
witness complex; Middle:� = 2 ; Right: � = 11 .

Figure 5: Effect of varying� versus the landmark density.

(a)n = 217, d � 7:66, " = 0 :5, � = 2 , hop-count distance.

(b) n = 217, d � 7:66, " = 0 :25, � = 2 , hop-count distance.

Figure 6: Same setting as above, with the weighted distance
replaced by the hop-count distance.

node degree is notedd. The intrinsic metric is approximated
by the graph distance in the connectivity network, where
each edge can be either unweighted (hop-count distance) or
weighted by its Euclidean length (weighted distance).

Figure 3 shows a typical example, with (a)" = 0 :5
and (b)" = 0 :25. In both cases, only the genuine 3 holes
persist and are therefore identi�ed as non-trivial1-cycles in
the geodesic Delaunay triangulation.
� Node density.We vary the number of nodes from 217 to

355. The average degree remains the same. The result
is shown in Figure 4. Again, the persistent homology

(a) " = 1
3 , random landmark selection outside

S
p2 L B p .

(b) " = 1
3 , insertion ofargmaxf dX ( q;L )

hfs( q) ; q 2 W n
S

p2 L B pg.

Figure 7: Landmark sets obtained by two different packing
strategies, and their geodesic witness complexes.

between the witness complex and its relaxed version gives
the homology of the domain. Thus, only the intrinsic
geometry of the domain matters, not the scale of the
network, as long as the latter remains suf�ciently dense.

� Landmark density.Figure 5 shows our results on the same
setup as above, with (a)" = 0 :85and (b)" = 0 :15. In the
�rst case, only two holes are captured, because of the low
landmark density. In the second case, three non-genuine
holes are not destroyed in the relaxed witness complex,
because the value of the relaxation parameter� is too
small given the relatively low node density. Increasing
� from 2 to 4 produces the correct answer (c). But setting
� to too high a value (� = 11, " = 0 :25) destroys some of
the genuine holes (d). Throughout our experiments, the
algorithm produced correct results with small values of�
(� � 4), provided that the nodes and landmarks sets were
reasonably dense. This demonstrates the practicality of
our approach, despite the large theoretical bounds stated
in Theorems 4.3, 4.4 and 5.1.

� Weighted graph distance vs. hop-count distance.Since
the hop-count distance is a poorer approximation to the
geodesic distance, the range of values of" that work with
it is reduced. In Figure 6 for instance, the scheme works
well with " = 0 :5, but not with" = 0 :25, in contrast with
the results of Figure 3.

� Packing strategy.Figure 7 shows some of our sampling
results. It appears that different packing strategies can
produce samples of very different sizes, as predicted
by Lemma 5.2. Maximizing the ratiodX (q;L )

hfs( q) at each
iteration seems to be a very effective strategy in practice,
but it is also time-consuming.

To conclude, let us emphasize that our approach turned out
to be also quite robust under more realistic communication
models, such as quasi-unit disk graph with link failures.

Possible extensions. This work focuses on the planar
case, with applications in sensor networks. A natural ex-
tension would be to consider bounded domains in higher-



dimensional Euclidean spaces, with applications in robotics
and geometric data analysis. Also, it would be relevant to
generate homology bases whose elements isolate the various
holes ofX . There exists some work along this line, but for a
slightly different context [24].
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