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Abstract

We presert a novel reconstruction algorithm that, given an
input point set sampled from an object S, builds a one-
parameter family of complexesthat approximate S at dif-
ferent scales. At a high level, our method is very similar in
spirit to Chew's surface meshing algorithm, with one notable
di®erence: the restricted Delaunay triangulation is replaced
by the witness complex, which makesour algorithm applica-
ble in any metric space. To prove its correctnesson curves
and surfaces,we highlight the relationship betweenthe wit-
nesscomplex and the restricted Delaunay triangulation in
2d and in 3d. Speci cally, we prove that both complexes
are equal in 2d and closely related in 3d, under some mild
sampling assumptions.

1 Intro duction

The problem of reconstructing a curve or a surfacefrom
scattered data points has received a lot of attention in
the past. Although it is ill-p osedin general, since in-
“nitely many shapeswith di®erert topologicaltypescan
interpolate a given point cloud, a number of provably
good methods have been proposed. The common de-
nominator of these methods is the assumptionthat the
input point set is densely sampled from a suzciently
regular shape: this assumption makes the reconstruc-
tion problem well-posed, since all suzciently regular
shapesinterpolating the point set have the sametopo-
logical type and are closeto one another geometrically.
It suxcesthen to approximate any of theseshapesto get
the right answer. The notion of "-sample,intro duced by
Amenta and Bern [1], provides a sound mathematical
framework for this kind of approad, the corresponding
setof reconstructible shapesbeingthe classof manifolds
with positive reach [21]. A number of provably-good al-
gorithms are basedon the "-sampling theory { see[7] for
a survey, and seweral extensionshave beenproposedto
reconstruct manifolds in higher-dimensionalspaces[12]
or from noisy point cloud data [20]. The theory itself
has beenrecertly extendedto a larger classof shapes,
known asthe classof Lipschitz manifolds[6]. In all these
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methods, the Delaunay triangulation of the input point
set plays a prominent role sincethe nal reconstruction
is extracted from it.
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Figure 1: One-parameterfamily of complexesbuilt by
the algorithm, and their Betti numbers.

This approac to surface reconstruction is limited
becausedt assumesmplicitely that a point cloud should
always represen a single classof shapes. Consider the
example of a closedhelical curve rolled around a torus
in R3 { seeFigure 1. Take a very denseuniform point
sampleof the curve: what doesthis point set represen,
the curve or the torus? Although both objects are
well-sampledaccordingto Amenta and Bern's sampling
theory, classicalreconstruction methods always choose
a singleshape, herethe curve or the torus, by restricting
themseleseither to a certain dimensionor to a certain
scale: for instance, the reconstruction method of [12]
or the dimension detection algorithm of [19] will detect
the curve but not the torus, since the point set is
a sparse sample of the curve but not of the torus.
Now, we claim that the result of the reconstruction
should not be either the curve or the torus, but both of
them. More generally, the result of the reconstruction
should be a one-parameterfamily of complexes,whose



elemers approximate the original shape at di®erert
scales,as illustrated in Figure 1. This point of view,
inspired from recen results in Computational Topology
[8, 11, 25], standsin sharp cortrast with previous work
on reconstruction and is echoed in the literature on non-
linear dimensionality reduction [28, 30] and topological
persistence[16, 31].

This paper preseris a novel reconstruction algo-
rithm that, given an input point set W sampled from
an object S, builds a one-parameterfamily of complexes
that approximate S at di®eren scales.At a high level,
the method is very similar to Chew's surfacemeshingal-
gorithm [5, 14]: it constructsa subsetL of W iterativ ely,
while maintaining a subcomplex of the Delaunay trian-
gulation of L. The one-parameterfamily of complexes
obtained from this iterativ e processis the result of the
algorithm. The di®erencewith Chew'sapproad is that,
instead of maintaining the restricted Delaunay triangu-
lation of L, we maintain its witnesscomplexCV(L). The
main advantagesare that the underlying object S does
not have to be known, and that the full-dimensional
Delaunay triangulation D(L) doesnot have to be com-
puted. Moreover, the algorithm canbe usedin any met-
ric space, ultimately enabling new applications of the
Delaunay-basedreconstruction ideas.

The witness complex can be viewed as a weak
version of the Delaunay triangulation, well-de ned and
computable in any metric space{ seeSection 2 below.
As sud, it hasplayedan important role in the context of
topological data analysis[18]. It was rst introducedby
de Silva [17], who provedthat C¥(L) is a subcomplex of
D(L) whene\er the points of L lie in generalposition in
a Euclidean space. Moreover, if the set W of witnesses
spansthe whole ambient space,then CV(L) is equal to
D(L). Now, the questionis whether this property holds
whenthe points of W are sampledfrom a subsetS of the
ambient space,sudc as for instance a submanifold: in
[18], Carlssonand de Silva obsened that CV(L) is then
closelyrelated to the restricted Delaunay triangulation
Djs(L), and they conjectured that both objects should
coincideunder somesampling assumptionson W and L.
We prove that this conjectureis valid for a curve in the
plane, but not for a surfacein 3d. In the latter case,we
shaw how to relax the de nition of the witness complex
sothat it contains Djs(L), and then how to extract a
subcomplex that approximates Djs(L) (and henceS).
This provesthat our reconstruction algorithm is correct
when applied to point samplesof Lipschitz curves or
surfaces.

We are only aware of onerelated result: in [3], Attali
et al. shav that CY(L) and Djs(L) coincide whenewer
the set W of withnessesspansan ertire submanifold of
R" of dimension one or two. This result di®ers from

oursin two ways: our setW can be nite, which makes
our result more practical, yet in return our set L has
to be sparse compared to W, for CY(L) to cortain
Djs(L). This sparsenesscondition is not an issuein
practice, sincethe setL is constructed by the algorithm.
Other noticeable di®erencesare that our manifolds can
have singularities, and that our point samplescan be
noisy. Our assumption on the input point set W
is fairly mild, since it amounts to saing that the
Hausdor® distance between W and S is suzciently
small. In particular, there is no sparsenesscondition
on W, and the amplitude of the noise can be as large
as the sampling density. This noise model, intro duced
in [10] and usedin subsequeh work on reconstruction
[8, 11, 24, 25|, is lessrestrictive than its predecessors
[13, 20, 23], and it makesour algorithm more practical.

The paper is organized as follows. In Section 2,
we recall several conceptsthat will be usedlater on. In
Section3, we preser our structural results. Speci cally,
we prove that the restricted Delaunay triangulation
and the witness complex are equal in 2d (Section 3.1)
and closely related in 3d (Section 3.2), even when
the data are noisy (Section 3.3). In Section 4, we
introduce our reconstruction algorithm and presern
someexperimental results.

2 Background and de nitions

Let S be a subsetof R? (resp. R®), L a nite set of
points in R? (resp. R®), and " a positive number.

Definition  2.1.

2 L is an "-noisy sampleof S if no point of L is farther
than " from S.

2 L is an "-sampleof S if no point of S is farther than
" from L.

2 L is "-sparse if the pairwise distances between the
points of L are at least ".

A 0-noisy sample is called a noise-freesample. When
the “rst two conditions of the de nition apply simulta-
neously for a same", the Hausdor®distance betweenL
and S is bounded by ". We denote by D(L) the Delau-
nay triangulation of L.

Definition  2.2. The Delaunay triangulation of L re-
stricted to S, or Djs(L) for short, is the sutcomplex of
D(L) made of the Delaunay faces whosedual Voronoi
faces intersect S.

Let W be another set of points in R? (resp. R?), Tnite
or in nite.
Definition  2.3.

2 Given a point w 2 W and a simplex %= [po; ¢¢¢; p]
with verticesin L, w witnesses¥if po; ¢¢¢; p kelongto



the | + 1 nearest neightors of w, that is, 8i 2 f0; ¢¢¢; Ig,
82 L nfpo; ¢¢¢;pg, d(w;p;) - d(w;a).

2 The witness complexof L relative to W, or CV(L) for
short, is the maximum abstract simplicial complex with
verticesin L, whosefaces are witnessel by points of W.

The fact that CV(L) is an abstract simplicial complex
means that a simplex belongsto the complex only if
all its facesdo. By de Silva's result’ [17], we have
CY(L) p D(L) for any setsW and L sud that the
points of L lie in generalposition (which will be assumed
implicitly in the rest of the paper). This implies that
CY(L) is always an embedded simplicial complex. In
the sequel,L will bereferredto asthe setof landmarks,
and W asthe set of witnesses.

Lipsc hitz curves and surfaces. Boissonnat and
Oudot [6] intro duced a new framework for the analysis
of Delaunay-based sampling algorithms. This frame-
work relies on a quartity, called the Lipschitz radius,
which plays a role equivalert to the local feature size of
Amenta and Bern [1], on a broader classof shapes{ the
classof Lipschitz curvesand surfaces.

Definition 2.4. Let S be the boundary of a boundel
open subsetO of R? (resp. R®). Given a point p2 S,
the k-Lipschitz radius of S at p, or Irg(p) for short,
is the maximum radius r suchthat O\ B(p;r) is the
intersection of B(p;r) with the hypograph of some k-
Lipschitz univariate (resp. bivariate) function. We call
Irg(S) the in mum of Irx over S.

It is proved in [6] that Ir(S) > 0 whenewer S is a
k-Lipschitz curve in R? or surfacein R3. In sud a
case, one can attach to eat point p 2 S a so-called
k-Lipschitz normal ny(p) and a so-called k-Lipschitz
supprt plane T (p), which play a role similar to the
usual normal vector and tangent plane in the Lipschitz
setting. The main result of [6] is the following:

Theorem 2.1. LetS beak-Lipschitz surfacein R® and
L ¥2S a nite point set, suchthat:

H1 L is an "-sampleof S, with " < 2 Ir(S),

H2 the triangles of Djs(L) have radius-edge ratios of
at most % with %< S22 where p= arctank.
Then, Djs(L) is a 2-manifold isotopic to S, at Hausdor®
distance at most" from S, and whoseoriented normals
approximate the k-Lipschitz normals of S within an

angle of arcsin(2%sin|).

Another useful result, proved in [26], is an equivalent of
Proposition 13 of [4] for Lipschitz surfaces:

Tin his paper, de Silva distinguishes between weak witnesses
and strong witnesses. Here, all witnesses are weak.

Lemma 2.1. Let S be a k-Lipschitz surface in R3, with
k < 1. Then, 8p 2 S, 8r - Iri(p), S\ B(p;r) is a
topological disk.

Similar results exist in the planar case,with similar yet
simpler proofs (omitted here):

Lemma 2.2. Let S be a k-Lipschitz curve in R?, with
k < 1 Then, 8p 2 S, 8 - Irg(p), S\ B(p;r) is
a topological arc. Moreover, the orthogonal projection
of S\ B(p;r) onto Tx(p) is a sgment whose vertices
are the orthogonal projections of the two endpints of
S\ B(p;r).

Theorem 2.2. If Sis a k-Lipschitz curvein the plane,
with k < 1, and if L is an "-sample of S, with " <
Irx(S), then Djs(L) is a polygonal curve homeomorphic
to S and at Hausdor®distance at most " from S.

3 Structural results

In this section, we highlight the relationship between
the witness complex and the restricted Delaunay trian-
gulation in 2d and in 3d. Let S be a k-Lipschitz man-
ifold, i.e. either a k-Lipschitz curve in the plane (Sec-
tion 3.1) or a k-Lipschitz surfacein 3d (Section 3.2),
for someconstart k , 0. For convenience,we de ne
M= arctank 2 [0;Y=[. Let W be a +-noisy +-sample
of Sand L ¥2W an "-sparse"-sampleof W. The con-
stants + and " will be made explicit later on. Clearly,
L isa (x+ ")-sample of S. We assumethat no vertex
of the Voronoi diagram of L lies on S, a condition that
can always be satis ed by an in nitesimal perturbation
of the points of L sinceS hasnon-zerocodimension. In
Sections3.1 and 3.2, we assumefurther that L is noise-
free (L Y2 S). The caseof a noisy set of landmarks is
deferredto Section 3.3.

3.1 The planar case.

Theorem 3.1. Assumethat pu< arcsin% Y, 7:2degand

that + < minf L gy, 6(‘2‘,°C°§S“d+§) glIre(S). If " satis'es

12sinpy . 6 + " 1 . 3
max 1j 8sinp’ 3cospj 2 <" <3 I (S) i 2

C¥(L) coincides with Djs(L).

+, then

The lower bound on " meansthat the set W of
witnessesmust be suxciently dens€ comparedto the
set L of landmarks, for the simplices of D;js(L) to be
witnessed. An illustration is given in Figure 2, which
showsthat CY(L) contains Djs(L) whenL is sparse(left
picture), whereaswhenL = W (" = 0), C¥(L) coincides
with the nearestneighbor graph of L, which hasnothing
to dowith Djs(L) (right picture). The upperboundon”

ZIn particular, we have" > 6+.
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Figure 2: A set of withessessampling a smooth closed
curve with noise,and two di®erert subsetsof landmarks
(in green)together with their witness complexes.

ensuresthat the setL of landmarks is sutciently dense,
sothat the nice properties of D;s (L) stated in Section2
hold, and that classicallocal argumerts can be applied
to show that CY(L) is included in Djs(L).

The proof of the theorem proceedsin two stages:
“rst, weshow that Djs(L) is included in CY(L) (Lemma
3.1), then we show that CY(L) is included in Djs(L)
(Lemma 3.2).

% and that + <

Lemma 3.1. Assume that p < ¢

: 1j 25in u. 3 cos Y " i
minf =i € cosu'+4) g Ire(S). If satis es
23|nu . " 1 .
maxf T 2snp; 3COSN 50 * < 5 In(S)i % then

Djs(L) is included in CW(L).

Proof. Let e= [u;Vv] bean edgeof Djs(L). By de nition
of Djs(L), the dual Voronoi edge of e intersects S at
somepoint ¢. Let r = d(c;u) = d(c;v) = d(c;L), which
is at most " + xsincelL isa (x+ ")-sample of S. Since
W is a +-sample of S, there is somew 2 W at distance
at most £ from c. Then, u and v are both included in
B(w;" + 24).

Let p be any point of L nfu;vg. We will prove
that p 2 B(w;" + 2+), which meansthat w witnesses
e. Consider the portion of S that lies in B(c;r).
Sincer - "+ x < Ir(S), we know from Lemma 2.2
that S\ B(c;r) is a topological arc whose endpoints
are u; v and whoseorthogonal projection onto Tk (c) is
the line segmen [4;VY], where U;¥ are the orthogonal
projections of u; v. If p doesnot belongto B (c;lrk(S)),
then it does not belong to B(w;" + 21) either, since
B(w;" + 2¢) u B(c;" + 3%), which by hypothesis is
included in B(c;Irx(S)). Otherwise, sincep 2 L nfu;vg,
S\ B(c;r) contains c but not p, therefore [4; ¥] contains
¢ but not the projection p of p, becausethe projection
from S\ B(c;Irk(S)) to Tk(c) is one-to-one. As a
consequenced(c;p) is at least d(c;p) , d(c;fu;¥g) +

d(p;fu;¥g). Sincel is "-sparse,we have d(p;u) , ",
dip;v) , ", and d(ciu) = d(c;v) , v
Moreover since S\ B(c;Irk(S)) is the graph of a k-
Lipschitz univariate function de ned over Ty (c), we have
d(p;t) , d(p;u)cosy, d(p;¥) , d(p;v)cosy, d(c;b) ,

d(c;u) cosy, and d(c;¥) , d(c;v)cosu. As aresult,
dcip) ,  d(cip), d(c;fevg) + d(pif b vg)
5 COSL+ " COSL= 5" COS:

B

This expressionis greaterthan " + 3t since" > mf;ﬁ
by hypothesis. It follows that p is farther than " + 3%
from c, and hencefarther than " + 2+ from w. Thus, w
witnesses|u; v]. Similarly, every other edge of Djs(L)
is withessed by some point of W. SinceL p W,
the vertices of Djs(L) witness themseles, hencethe 1-
skeleton of Djs(L) is included in CV(L).

Finally, we assumedthat no Voronoi vertex lies
on S, which implies that Djs(L) has no simplex of
dimension two or more. Hence, Djs(L) is equal to its
1-skeleton, which is included in CY(L). This provesthe
lemma. o

The proof of the secondlemma usessimilar argu-
mernts and is therefore omitted.

Lemma 3.2. Assumethat p < arcsin— and that £ <

i 8sin " Hear 12sin " 1 .
185Nl |py (S). If " satis'es Tigsnn < "< 5 I(9)i

3 then C¥(L) is included in Djs(L).

3.2 The 3d case. Unlikein the planar case,the wit-

nesscomplex and the restricted Delaunay triangulation

of points sampledfrom a surfacein 3d may not always
coincide, even in situations where the sets of witnesses
and landmarks satisfy strong sampling conditions. The
reasonis that, when atetrahedron t of D(L) hasalmost
cocircular vertices, the chance for any of the diagonal
edgesof t to be witnessedby a point of W is small {

sud a tetrahedron is called a sliver in the literature [29].

In order to give an intuition of this fact, let us assume
for simplicity that the surfaceis °at and that the ver-
ticesoft are cocircular, asin Figure 3 (left). The order-2
Voronoi diagram of the verticesis then degenerate,the
Voronoi cells of the diagonal edgesbeing reducedto a
singlepoint p that lies at the intersection of the edgesof
the diagram. Therefore, any diagonal edgecan be wit-

nessedonly by p, which meansthat the probability for
any triangle of the quadrangleto be witnessedwhen W

is “nite is zero. As aresult, holesappear with probabil-

ity onein the witnesscomplex, asillustrated in Figure 4
(left).

When the vertices of tetrahedron t are almost-
cocircular, asin Figure 3 (right), the order-2 Voronoi
cell of one diagonal edgeis empty, while the cell of the
other diagonal edgeis arbitrarily small. Thus, the prob-
ability for any triangle of the quadrangleto be witnessed
when W is nite is also arbitrarily small. Although it
is always possibleto perturbate the point setL sothat
the points are in generalposition, guaranteeing that the
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Figure 4: Witness complex and ° -witness complex.

order-2 Voronoi cells of the edgesof Djs(L) are sux-
ciertly large requireslarge perturbations, which are not
tractable in practice since the underlying surface S is
unknown.

3.21 The °-withess complex. Our approac for
dealing with the above issue consistsin relaxing the
de nition of the witness complex, so that the latter
includes the restricted Delaunay triangulation.  This
requiresto modify the concept of witness:

Definition  3.1. Given an integer m, a point w 2 W
and a simplex %= [po; ¢¢¢; p] with verticesin L, w m-
witnesses%if all the d(w; p;) are amongthe m smallest
valuesof the setfd(w;q); q2 Lg.

Obserwe that, in the casewherem - |, somevertices of
¥amust be equidistant to w for w to m-witness % In
particular, if m = 1, then all the points of ¥%2must be
equidistant to w, which meansthat w is a strong witness
of % or equivalertly, that %is a Delaunay simplex. If
m = 0, then no point w 2 W can m-witness % In
[18], the authors use m-witnessesonly for edges. More
generally, we usethem for simplicesof all dimensions:

Definition  3.2. Given a countable sequene °© of inte-
gers, the ° -witness complexof L relativeto W, or GV(L)
for short, is the maximum abstract simplicial complex
with verticesin L, suchthat each i-face is °;-withesseal
by some point of W.

Since the simplices of GY(L) have their verticesin L,

of integers, only ° through °;,j; 1 are used. There is
a natural relationship between CV(L) and CV(L): if
° , i+ 18i, then QY(L) contains CV(L); in cortrast,
if ° - i+ 18i, then QY(L) is included in C"(L); thus,
CY(L) = @QY(L) whenewer °; = i + 1 8i. In addition, if
°; = 0for somei, then the i-skeleton of GY(L) is empty,
sincea simplex cannot be 0-witnessed,and therefore the
dimension of GY(L) is at mostij 1.

Theorem 3.2. Assume that | < arccos(2sin”=r) Y

" COSj 2sin ¥=7 " - =
29.7degand that £ < Tcos |2 sin 7= Ire(S). If " satis es
8 sin =7

COSHj 2sin =7
° of integers such that ° |,
Djs(L) is included in GY(L).

+< " < Irg(S)i 34, then, for any sequene
1, %, s 6and°2 s 6,

Proof. Sincethe vertices of D;s(L) belongto L, which
is included in W, they witness themseles and thus
belongto GY(L). In addition, since we assumedthat
no Voronoi vertex lieson S, Djs(L) contains no simplex
of dimension three or more.

Let % be a simplex (edge or triangle) of Djs(L),
and let B(c;r) be a Delaunay ball certered on S and
circumscribing ¥ SinceW is a +-sampleof S, there is a
point w 2 W at distance at most + from c. Then, lies
in the ball B (w;r + %), which is included in B (c;r + 2%).

Claim 3.1. The kall B(c;r + 2+) contains at most six
points of L.

Proof. Sincel is a (x+ ")-sampleof S, the radius r of
the surface Delaunay ball is at most £+ ". Therefore,
r+ 2+ . "+ 3t which is lessthan Irg(S) according
to the hypothesis of Theorem 3.2. It follows that
S\ B(c;r + 24) is the graph of a k-Lipschitz bivariate
function de ned over the plane T(c).

Let pp; ¢¢¢; p be the points of L\ B(c;r + 24). We
call p;; ¢ec; py their orthogonal projections onto Ty (c).
Sincel is "-sparse,the p; are at least" away from one
another. And since they belong to S\ B(c;lrg(9)),
which is the graph of a k-Lipschitz bivariate function
de ned over the plane Ty (c), their projections p; are at
least " cosp away from one another. Moreover, since
B(c;r) is a Delaunay ball, the p; are at least r away
from c, hencethe p; are at leastr cosp away from c.

The rest of the proof dependson whetherr | " or
r < ". In fact, the overall ideasare the same,but some
technical details di®er.

2|fr, ", then,insideTi(c), candthe p; arecerters
of pairwise-disjoint open disks of radius %cosp. Let
D¢;D;; ¢¢¢; D, denote thesedisks. Sincethe p; belong
to B(c;r + 2+), the p; belongto the disk D(c;r + 24+).
Therefore, D¢; Dq; ¢¢¢; D, form a congruent padking of

their dimensionis at mostjLjj 1. Hence,in the sequence the disk D(c;r + 2+ + %cosu). Now, according to the



hypothesesof the claim, we have:

oy 1
+ 24+ — T3 - < - +
r+ 2+ 2cosu 3+ 2cosu 2cosu Sinve

Hence, by a classical result on congruent padkings of
disks [22, 27], there are at most sewen disks of radius
%cosu padckedin D(c;r + 2+). The fact that D. is one
of them implies that | - 6, which provesthe claim in
the casewherer | "

2 If r < ", then ¢ and the p; are cenrters of
pairwise-disjoint open disks of radius 5 cosp. — Let
D¢;Dg; ¢¢¢; D, denote thesedisks. Sincethe p; belong
to B(c;r + 24), D¢; Dy;¢¢¢; D) areincluded in D(c;r +
2++ L cosy). Now, B(c;r) is a Delaunay ball, hence
its boundlng sphere cortains at least two points of L,
which implies that r , "=. Moreover, the hypotheses

of the claim state that + < 7 Fosi g 1, which is at

most 5 c»f— i 1 . Therefore,D¢;Dy; ¢¢¢; D form a

congruent padking of a disk of radius:
3

r cosy . r
r+2t+ 5cosu < r+r zaN—i 1.+ 5cosu
- r 1 .
= ZC0SH g+l

It follows, by the same result as above on congruert
padkings of disks, that | - 6, which provesthe claim in
the casewherer < ". o

Claim 3.1 implies that the vertices of ¥2are among
the six nearest neighbors of w. Since this is true for
any edgeor triangle of Djs(L), and sincethe vertices of
Djs(L) belongto GY(L), GY(L) cortains all the edges
and triangles of Djs(L). This ends the proof of the
theorem. a

The next theorem guarantees that the simplices
of QY(L) are not too large as long as the °; remain
bounded. It follows that the size of GY(L) is linear in
jLj, sincelL is sparse. This property can be generalized
to higher dimensions, at the price of an exponertial
growth of the constart factor. This motivates the
use of the withess complex instead of the Delaunay
triangulation.

Theorem 3.3. Assume that %" satisfy £+ + " <
EB%E Ir(S). Then, for any point w 2 W, the dis-
tance between w and its sixth n;earest neightor among
the points of L is at most + + COS +1 (x+"). As

a consejuene, for any sequene ° of integers such that
°; - 6, the total numker of simplices of GY(L) is at

most 2°(¢* === °)jL i which is linear with respect to
jLj asfar aspis xed and * is within a constant factor
of "

Proof. Let w 2 W and let w be a point of S closest
to w. Since W is a *-noisy sample of S, we have
d(w;w) 3 + We call-p; ¢¢¢; p the points of L that

lie in B W; cosp+ 1 (£+") , and pq; ¢CC; fy their

orthogonal projections onto the plane Ty (W). We will
provethat | , 6.

SincelL is a (x+ ")-samplepof S, the balls B; =
B(pi;x+ ") cover S\ B(W; (") 6é=xosy) (obsene that,
amongthe balls of radius £+ " cert%red at the points of
L, only the B; intersect B (W; (++") 6=osy)). It follows
that, inside Ty (W), the disksD; = D(p;; £+ ") cover the
orthogonal projection of S\ B (W;(#+")" &=osp). Now,
according to the hypothesis of the lemma, we have
(#+") &=osy < Ir(S). Thus, by Lemma 2.1, S\
B (W; (+")" &=osy) is atopological disk whoseorthogonal
projection onto Ty (W) cortains the projection D of the
intersection of B (W; (++")" 6=osy) with the cone of apex
W, of axis aligned with n (W) and of half-angle Zi W
Therefore, the D; Fgwer D, which is a disk of certer W
and radius (£+ ") 6. Thus, the number of disks D; is
at least

Area(D) _
Area(D;)

6+ ") _
Yt+")2

It 3foIIQws that the number of points of L that lie in
B w; COSH +1 (x+") isatleast6. As aresult, the
dlstancefrgng w to its sixth nearest#ar,’;dmark is at most
d(w;w) + +1 (£+")- +1 (£+").

COS M COS

Let us now bound the size of GY(L). Let p be
a point of L. From the above paragraph we deduce

that the edgesof GY(L) mgldent to-p are included in
balls of radii at most * + cosu +1 (x+"). Hence,
all edgesbelong ﬁopa common ball of certer p and

radiusr . 2++ 2 1 (x+ "), which is equal to
" 3 + - ; ;
2" 1+ cosp t COS“ + 2 = . The neighboring vertices

tr; ¢¢¢; g of pin GY(L) belongto B(p;r) aswell. Now,
sincethe points of L arefarther than " from oneanother,
the g are certers of pairwise-disjoint balls of radius

+
cos p

" . . Vol(B (p;r))
=, hencpe their :umbe[ II|§ at most —VOI(B(p =)
64 1+ 0+ B4+2 2 = O "1+ 2

cosp cos cos3
Since every simplex of GY(L) incident to p is uniquely
dened as a subset of fq;¢¢¢;qgg, the number of
simplices of GY(L) incident to p is at most 2', which

givesthe result. o

3.2.2 Manifold extraction. It follows from The-
orem 3.2 that GY(L) cortains Djs(L), but Figure 4



(right)® shaws that GY(L) is not restricted to Djs(L)
and contains additional simplicesthat are small enough
to be °-witnessed. Nevertheless,it is possibleto extract
from GV(L) a simplicial surface$ isotopic to S and at
Hausdor®distance O(" + +) of S. The extraction pro-
ceduretakesa number %as parameter and proceedsas
follows:

1. Since the goal is to extract a 2-manifold, only
the 2-skeleton of GY(L) is considered. Since it
may not be an embedded complex, we intersect
it with D(L). The result is a pure 2-dimensional
subcomplex C of D(L).

2. To guarartee that the output simplicial surface
has no skinny triangle, we delete from C all the
triangles of radius-edgeratio greater than %

3. We greedily remove from C all the triangles in-
cident to sharp edges An edgeis sharp if all its
incident triangles in Clie in a small wedgeof angle
at most ¥=. This de nition appliesin particular
to edgesthat are incident to one single triangle.

4. By a depth-rst walk in the dual graph of the re-
maining part of C, we extract the outer boundary
of C.

Obsenethat steps3. and 4. correspond to the manifold
extraction procedure of [1, 2]. As argued in these
papers, the outcome is a simplicial complex 8 whose
dihedral anglesare greater than ¥=. Moreover, thanks
to step 2., the radius-edge ratios of the facets of $
are at most % Howewver, two issuesarise: rst, by
greedily removing non-Delaunay triangles or triangles
with sharp edgesor large radius-edgeratios from GV(L),
steps 1. through 3. might end up with an empty
complex C. As a result, $ may be empty. Second,
the outer boundary of C might not be an embedded

surfacesinceit may corntain multiple vertices or edges. -

By proceeding with a depth-rst seardh on the dual
graph of C, step 4. duplicates multiple vertices and
edges, so that the resulting complex $§ is a simplicial
surfacewhoseimmersion in R? coincideswith the outer

boundary of C.

Theorem 3.4. Let %= 1+ 1LZ50'% 1, 1:038 As-
sume that p < arctan 1+47% Y, 186deg If £" satisfy
8 sin ¥=7 " cos® i n .
Cospi 2sn 7 T S (cos p+ ' B)(4+3 cos? W% 3 Irk(S) i

2 +
@CSOQT +, then, for any sequene ° of integers such
that ° , 1and°; = °, = 6, the simplicial complex S

extractea from GW (L) with parameter %is an emhteddel

surfage |sot0p|e to S and at Hausdor®distance at most
++ cosu +1 (x+") c‘;"sf from S.

SThanks to a bug in Geomview, we can see some hidden
triangles in the vicinit y of slivers, such asin green areas.

The proof of the theorem (omitted here) is roughly the
sameasin Section5 of [6]. Hereis a short overview:

{ First, weshaw that the triangles of Djs(L) are not
skinny and make large dihedral angles. This fact,
combined with Theorem 3.2, implies that complex
Ccontains Djs(L) after step 3. above. We deduce

that S is not empty, since Djs(L) is a manifold
without boundary, by Theorem 2.1.

{ SecondweuseTheorem 3.3 (ii) of [6] to shaw that
$isaLipschitz surface,which impliesin particular
that it is an embeddedsurface.

{ Third, we useProposition 6.4 of [6] to bound the
Hausdor® distance dy (S;S) between $ and S.
We show that dy (8;S) is small comparedto the
Lipschitz radii of S and S.

{ Finally, we apply Theorem 6.2 of [9] to show that
8 and S are isotopic.

3.3 Dealing with noisy data. Our previous results
hold provided that the set L of landmarks lies on the
curve or surfaceS. Theorem 3.5 below shaows that this
condition is not mandatory, under somerestrictions on
the densitiesof W and L. Let , o ¥ 0:078 denote the
smallest positive root of the polynomial 64, ¢+ 832 5+
1008 i 160, 3j 4, 2j 12, +1,andfor any p2 [0; §], let
. (1) bethe smallestpositive root of 16(4sin® pj 1), ¢+
32, 5j 12(2+3sin? ), *+ 8, 3+ (4 sin? p+ 63), 2+ 64, | 16.

Theorem 3.5. Let S be a k-Lipschitz surface in R,
and let L be a +-noisy "-sparse (x + ")-sample of S.
Assumethat +" satisfy the following conditions, where

p= arctank:
8 n,.r @ui 2 °
H 1. 2 4sinp . cos(2u)j 2sinp . . "
+< .
% < min n4 2" 2+4 sin u)’ 2(c08(2 u)+205m MERAE (W)

+< min

1
14 | 2Irk(S) g 12Irk(S) Ir (S)

Then, there exists a k*Lipschitz surface S° passing
throughthe points of L, isotopic to S, and at Hausdor®
distance at most " + 3+ from S, such that:

8 0 0 11
kOZ tan @arcsin@ " 4((1+2 sin p) E+sin p) g AA
2sin arcsin 2(1i2 Z)i 2 arcsin %
Iro(SY , I (S)i (2" + 78) > 1 Ire(S)

If the set W of witnessesis a *-noisy +-sample of
a k-Lipschitz surface S, for some suzciently small +
(as comparedto Irg (S)), then Theorem 3.5 ensuresthat
there exists an interval of valuesof " suc that any "
sparse"-sample L of W lies on a k®Lipschitz surface
SO with k9= O(k + =) and Ir, (SY = -(Ir «(S)). The
structural results of Section 3.2 apply then to S° W,
L. And since S is isotopic to S and closeto it for the
Hausdor®distance, these results hold for S, W, L as



well, with slightly worse constarts. There exists also a
version of Theorem 3.5 for Lipschitz curves, which can
be combined with the structural results of Section 3.1.

The proof of the theorem (omitted here) consists
in building an isotopy A : [0;1]£ S ! R® sudh
that S° = A(1;S) is a k®Lipschitz surface passing
through the points of L, with k® = O(k + =) and
Iro(S9 = -(Ir (S)). Intuitiv ely, sincethe points of L lie
" away from one another, with " large comparedto the
amplitude * of the noise, the surfaceS can be snappd
onto the points of L without changing its normals too
much. This can be easily seenon simple examples,sud
asfor instancewhen S is the x-axis in R? (in this case,
the snapped curve is the polygonal chain connectingthe
points of L in the order of their abscissae).

4 Application to reconstruction

4.1 Algorithm.  The algorithm works in any arbi-
trary metric space. It takesasinput a nite point set
W, identi ed as the set of witnesses,and an optional
courtable sequence of integers,whosedefault value is
°; = i+ 18i (which corresppndsto GY = CV). The algo-
rithm constructs a setL p W of landmarks iterativ ely,
starting with L = ;, and in the meartime it maintains
CY(L). At ead iteration, the witness lying furthest
away from L is insertedin L, and GY(L) is updated as
described below. The processstopswhenL = W. The
output of the algorithm is either the one-parameterfam-
ily of complexesG¥(L) built throughout the process,or
simply the diagram of their Betti numbers, computed
on the °y usingthe persistencealgorithm# of [31]. With
this diagram, the user can determine the scaleat which
to processthe data: it is then easyto generatethe cor-
responding subset of landmarks (the points of W have
been sorted according to their order of insertion in L)
and to rebuild its witness complex.

4.2 Update of CV(L). Our strategy to update
CY(L) relies on the following obsenation: when a wit-
nessp is inserted in L, every simplex that appearsin
CY(L) is incident to p, whereasevery simplex that dis-
appears from CQY(L) has a face that is no longer °-
witnessed. It follows that the °-witnessesof all these
simplicesbelongto the reverse- -nearestlandmarks® of
p, where - = minfj Lj; max; °;g. Hence,GV(L) can be
updated by performing a reverse - -nearest landmarks
seard on p, and then, for ead witness w in the out-
come,a - -nearestlandmarks seard on w, to determine

7The Ttration used in [31] is rebuilt at each iteration, since
some simplices are deleted from our complex CV(L).
5These are the witnesses that have p among their - -nearest

landmarks.

which simplicesto insert or deletefrom GY(L). A num-
ber of dynamic data structures exist that can perform
thesequeriesexciently { see[15] for a survey. Note how-
ever that - can be aslarge asjWj, a casein which the
above queriestake linear time. Moreover, when®; | jLj
8i, GY(L) coincideswith the complete hypergraph of L
and hencehas an exponertial size. Nevertheless,in Eu-
clidean spaceR", - is more likely to be a constart de-
pending (exponertially) on n, which reducesthe size of
CY(L) to O(jLj), by Theorem 3.3. The total time spent
to maintain GV(L) is then O(jWj?), since any newly-
created landmark has £(jW]j) reverse - -nearest land-
marks (these can be detected naively by an exhaustive
seart on the setW), ead of which witnessesa constart
number of simplices (these can be found by maintain-
ing the lists of - -nearestlandmarks of the witnesses).
We conjecture that it should be possibleto reduce the
time complexity to O(jWjlogjWj), under somesparse-
nesscondition on W.

4.3 2d and 3d cases. We take ® = (1;2;3) in 2d
and ° = (1;6;6;4) in 3d, as prescribed by the theory.
Moreover, we replace GY(L) by its intersection with
D(L). This makessensebecauseDjs(L) being a subset
of D(L), Theorems3.1and 3.4 hold the sameif GV(L) is
replacedby GY(L)\ D(L). The advantage of the latter
complex is that it can be stored as a subcomplex of
D(L), which allows to speed-upthe (reverse)- -nearest
landmarks queriesin practice. Another thing in 3d is
that we also maintain the subcomplex § extracted by
the procedure of Section 3.2.2.

4.4 Theoretical guarantees. Let L(i) denote the
setL at the end of iteration i of the algorithm. Calling
"(i) the minimum number sud that L(i) is an "(i)-
sample of W, we have the following:

Lemma 4.1. At any iteration i, L(i) is an "(i)-sparse
"(i)-sample of W.

Proof. At ead iteration j i of the algorithm, the
witnessp(j ) farthest from L(j j 1)isinsertedin L(j i 1).
Right beforethis insertion, L(j j 1)isan"(j j 1)-sample
of W. This meansthat the distancefromp(j)to L(jj 1)
is"(j i 1). SinceL keepsgrowing during the processwe
have"(j), "(j + 1), 8j - i. Thus, eat point inserted
in L beforeor at iteration i is at least"(ij 1) away from
L at the time of its insertion. This implies that L(i) is
"(i i 1)-sparse,and therefore also " (i)-sparse. ©

From this lemma and from Theorems 3.1, 3.4 and
3.5, we deducethat, if W is a +-noisy +-sample of some
k-Lipschitz manifold S in R? (resp. R®), for suciently
small valuesof + and k, then there exists an interval of



Figure 5. Diagram of Betti numbers of § for the
Tanglecule point set.

valuesof " (i) such that CY(L(i)) (resp. S) is a correct
approximation of S. Therefore, the topological type
of CY(L) (resp. 8) stabilizes for sometime during the
courseof the algorithm, and sodo topological invariants
such ashomology groups. The duration of the stabilized
phasedependson the ratio = (s).

These guarantees hold provided that the input
point set W is a #-noisy +-sample of the underlying
manifold S, for somesuzciently small value of +. This
is equivalent to saying that the Hausdor® distance
betweenW and S is boundedby *. In particular, there
is no sparsenesgondition on W, and the amplitude of
the noisecan be as large as the sampling density.

4.5 Exp erimen tal results and discussion. Fig-
ure 5 shows three main phasesin the ewlution of the
Betti numbersof 8 (the x-axis represerts =iy on a log-
arithmic scale): rst, their behaviour is erratic and the
topology of § keepschanging, because"'(i) is too large
comparedto Ir(S); then, the Betti numbers stabilize
and a plateau appearsin the diagram, as predicted by
the theory; nally, (i) becomestoo small comparedto
+, and holes appear in the complex, which doom the
manifold extraction process.Somesnapshotsof S dur-
ing the three phasesare given at the bottom of Figure 5.
The plateau in Figure 6 is smaller, dueto the fairly high
value of + in the data set. Obserwe that the topological
type of S on the plateau (genus = 6) coincideswith the
one of the original physical object, but not with the one

Figure 6: Diagram of Betti numbersof S for the Happy
Buddha point set.

of the model in the repository (gerus = 104). The rea-
sonis that, due to noiseand holesin the data, classical
reconstruction techniques fail becausethey look at the
point cloud at one scaleonly. In cortrast, our method
provides reconstructions at various scalesand generates
plateaus wheneer the topological type is stable enough
to be plausibly that of the underlying object. For in-
stance, in Figure 6, a new plateau appears right be-
fore the data structure becomesunstable: this plateau
indicates that a new handle (shown on the model on
the left) has beendetected. Another exampleis given
in Figure 1, where the diagram has two well-separated
plateauscorresponding to two plausible reconstructions:
atorus, and a simple closedcurve drawn on that torus.
To handle the changein dimension (shown at the bot-
tom row of the “gure), we maintained CV(L) for both
° = (1;2;3;4) and ° = (1,6;6;4) simultaneously, and
determined at ead step the complexto keepaccording
to their Betti number 5.

5 Conclusion

We have intro duceda newreconstruction method, based
on the witness complex. This method usesinter-sample
distances alone and can therefore be applied in any
metric space.Moreover, it standsin sharp corntrast with

previouswork in the area, sinceit is multiscale and gives
someinsights on the various plausible topological types
of the original object. We believe that this approact
to manifold reconstruction is highly practical and has
a number of potential applications, suc asfor instance
topological noise removal or mesh compression. As a
side product, in order to prove our algorithm correct
on Lipschitz curves and surfaces,we have highlighted



the relationship betweenthe witness complex and the
restricted Delaunay triangulation in 2d and 3d.
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