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Abstract

We present a novel reconstruction algorithm that, given an
input point set sampled from an object S, builds a one-
parameter family of complexes that approximate S at dif-
ferent scales. At a high level, our method is very similar in
spirit to Chew's surfacemeshingalgorithm, with onenotable
di®erence: the restricted Delaunay triangulation is replaced
by the witness complex, which makesour algorithm applica-
ble in any metric space. To prove its correctnesson curves
and surfaces,we highligh t the relationship between the wit-
ness complex and the restricted Delaunay triangulation in
2d and in 3d. Speci¯cally , we prove that both complexes
are equal in 2d and closely related in 3d, under some mild
sampling assumptions.

1 In tro duction

The problem of reconstructing a curve or a surfacefrom
scattered data points has received a lot of attention in
the past. Although it is ill-p osed in general, since in-
¯nitely many shapeswith di®erent topological typescan
interpolate a given point cloud, a number of provably
good methods have been proposed. The common de-
nominator of thesemethods is the assumption that the
input point set is densely sampled from a su±ciently
regular shape: this assumption makes the reconstruc-
tion problem well-posed, since all su±ciently regular
shapes interpolating the point set have the sametopo-
logical type and are closeto one another geometrically.
It su±cesthen to approximate any of theseshapesto get
the right answer. The notion of " -sample,intro ducedby
Amenta and Bern [1], provides a sound mathematical
framework for this kind of approach, the corresponding
setof reconstructible shapesbeing the classof manifolds
with positive reach [21]. A number of provably-good al-
gorithms arebasedon the "-sampling theory { see[7] for
a survey, and several extensionshave beenproposedto
reconstruct manifolds in higher-dimensionalspaces[12]
or from noisy point cloud data [20]. The theory itself
has been recently extended to a larger classof shapes,
known asthe classof Lipschitz manifolds [6]. In all these
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methods, the Delaunay triangulation of the input point
set plays a prominent role sincethe ¯nal reconstruction
is extracted from it.

Figure 1: One-parameter family of complexesbuilt by
the algorithm, and their Betti numbers.

This approach to surface reconstruction is limited
becauseit assumesimplicitely that a point cloud should
always represent a single classof shapes. Consider the
example of a closedhelical curve rolled around a torus
in R3 { seeFigure 1. Take a very denseuniform point
sampleof the curve: what doesthis point set represent,
the curve or the torus? Although both objects are
well-sampledaccording to Amenta and Bern's sampling
theory, classical reconstruction methods always choose
a singleshape, herethe curveor the torus, by restricting
themselveseither to a certain dimension or to a certain
scale: for instance, the reconstruction method of [12]
or the dimension detection algorithm of [19] will detect
the curve but not the torus, since the point set is
a sparse sample of the curve but not of the torus.
Now, we claim that the result of the reconstruction
should not be either the curve or the torus, but both of
them. More generally, the result of the reconstruction
should be a one-parameterfamily of complexes,whose



elements approximate the original shape at di®erent
scales,as illustrated in Figure 1. This point of view,
inspired from recent results in Computational Topology
[8, 11, 25], stands in sharp contrast with previous work
on reconstruction and is echoed in the literature on non-
linear dimensionality reduction [28, 30] and topological
persistence[16, 31].

This paper presents a novel reconstruction algo-
rithm that, given an input point set W sampled from
an object S, builds a one-parameterfamily of complexes
that approximate S at di®erent scales.At a high level,
the method is very similar to Chew'ssurfacemeshingal-
gorithm [5, 14]: it constructsa subsetL of W iterativ ely,
while maintaining a subcomplex of the Delaunay trian-
gulation of L . The one-parameterfamily of complexes
obtained from this iterativ e processis the result of the
algorithm. The di®erencewith Chew'sapproach is that,
instead of maintaining the restricted Delaunay triangu-
lation of L , wemaintain its witnesscomplexCW(L ). The
main advantagesare that the underlying object S does
not have to be known, and that the full-dimensional
Delaunay triangulation D(L) doesnot have to be com-
puted. Moreover, the algorithm can be usedin any met-
ric space,ultimately enabling new applications of the
Delaunay-basedreconstruction ideas.

The witness complex can be viewed as a weak
version of the Delaunay triangulation, well-de¯ned and
computable in any metric space{ seeSection 2 below.
As such, it hasplayedan important role in the context of
topological data analysis[18]. It was¯rst intro ducedby
de Silva [17], who proved that CW(L ) is a subcomplexof
D(L) whenever the points of L lie in generalposition in
a Euclidean space. Moreover, if the set W of witnesses
spansthe whole ambient space,then CW(L ) is equal to
D(L). Now, the question is whether this property holds
whenthe points of W aresampledfrom a subsetS of the
ambient space,such as for instance a submanifold: in
[18], Carlssonand de Silva observed that CW(L ) is then
closely related to the restricted Delaunay triangulation
D jS (L ), and they conjectured that both objects should
coincideunder somesamplingassumptionson W and L.
We prove that this conjecture is valid for a curve in the
plane, but not for a surfacein 3d. In the latter case,we
show how to relax the de¯nition of the witness complex
so that it contains D jS (L ), and then how to extract a
subcomplex that approximates D jS (L ) (and henceS).
This provesthat our reconstruction algorithm is correct
when applied to point samplesof Lipschitz curves or
surfaces.

Weareonly awareof onerelated result: in [3], Attali
et al. show that CW(L ) and D jS (L ) coincide whenever
the set W of witnessesspansan entire submanifold of
Rn of dimension one or two. This result di®ers from

ours in two ways: our set W can be ¯nite, which makes
our result more practical, yet in return our set L has
to be sparse compared to W , for CW(L ) to contain
D jS (L ). This sparsenesscondition is not an issue in
practice, sincethe set L is constructed by the algorithm.
Other noticeable di®erencesare that our manifolds can
have singularities, and that our point samplescan be
noisy. Our assumption on the input point set W
is fairly mild, since it amounts to saying that the
Hausdor® distance between W and S is su±ciently
small. In particular, there is no sparsenesscondition
on W , and the amplitude of the noise can be as large
as the sampling density. This noise model, intro duced
in [10] and used in subsequent work on reconstruction
[8, 11, 24, 25], is less restrictiv e than its predecessors
[13, 20, 23], and it makesour algorithm more practical.

The paper is organized as follows. In Section 2,
we recall several conceptsthat will be usedlater on. In
Section3, wepresent our structural results. Speci¯cally,
we prove that the restricted Delaunay triangulation
and the witness complex are equal in 2d (Section 3.1)
and closely related in 3d (Section 3.2), even when
the data are noisy (Section 3.3). In Section 4, we
intro duce our reconstruction algorithm and present
someexperimental results.

2 Background and de¯nitions

Let S be a subset of R2 (resp. R3), L a ¯nite set of
points in R2 (resp. R3), and " a positive number.

Definition 2.1.
² L is an "-noisy sampleof S if no point of L is farther
than " from S.
² L is an "-sampleof S if no point of S is farther than
" from L.
² L is " -sparse if the pairwise distances between the
points of L are at least " .

A 0-noisy sample is called a noise-freesample. When
the ¯rst two conditions of the de¯nition apply simulta-
neously, for a same", the Hausdor®distancebetweenL
and S is bounded by " . We denote by D(L) the Delau-
nay triangulation of L .

Definition 2.2. The Delaunay triangulation of L re-
stricted to S, or D jS (L ) for short, is the subcomplex of
D(L) made of the Delaunay faces whosedual Voronoi
faces intersect S.

Let W be another set of points in R2 (resp. R3), ¯nite
or in¯nite.

Definition 2.3.
² Given a point w 2 W and a simplex ¾= [p0; ¢¢¢; pl ]
with vertices in L , w witnesses¾if p0; ¢¢¢; pl belong to



the l + 1 nearest neighbors of w, that is, 8i 2 f 0; ¢¢¢; lg,
8q 2 L n f p0; ¢¢¢; pl g, d(w; pi ) · d(w; q).
² The witnesscomplexof L relative to W , or CW(L ) for
short, is the maximum abstract simplicial complex with
vertices in L , whosefacesare witnessed by points of W .

The fact that CW(L ) is an abstract simplicial complex
means that a simplex belongs to the complex only if
all its faces do. By de Silva's result1 [17], we have
CW(L ) µ D(L) for any sets W and L such that the
points of L lie in generalposition (which will beassumed
implicitly in the rest of the paper). This implies that
CW(L ) is always an embedded simplicial complex. In
the sequel,L will be referred to as the set of landmarks,
and W as the set of witnesses.

Lipsc hitz curv es and surfaces. Boissonnat and
Oudot [6] intro duced a new framework for the analysis
of Delaunay-based sampling algorithms. This frame-
work relies on a quantit y, called the Lipschitz radius,
which plays a role equivalent to the local feature sizeof
Amenta and Bern [1], on a broader classof shapes{ the
classof Lipschitz curvesand surfaces.

Definition 2.4. Let S be the boundary of a bounded
open subsetO of R2 (resp. R3). Given a point p 2 S,
the k-Lipschitz radius of S at p, or lr k (p) for short,
is the maximum radius r such that O \ B (p; r ) is the
intersection of B (p; r ) with the hypograph of some k-
Lipschitz univariate (resp. bivariate) function. We call
lr k (S) the in¯mum of lr k over S.

It is proved in [6] that lr k (S) > 0 whenever S is a
k-Lipschitz curve in R2 or surface in R3. In such a
case, one can attach to each point p 2 S a so-called
k-Lipschitz normal nk (p) and a so-called k-Lipschitz
support plane Tk (p), which play a role similar to the
usual normal vector and tangent plane in the Lipschitz
setting. The main result of [6] is the following:

Theorem 2.1. Let S be a k-Lipschitz surface in R3 and
L ½ S a ¯nite point set, such that:
H1 L is an "-sampleof S, with " < 1

7 lr k (S),
H2 the triangles of D jS (L ) have radius-edge ratios of

at most %, with %< cos 2µ
2 sin µ , where µ = arctan k.

Then, D jS (L ) is a 2-manifold isotopic to S, at Hausdor®
distance at most " from S, and whoseoriented normals
approximate the k-Lipschitz normals of S within an
angle of arcsin(2%sinµ).

Another useful result, proved in [26], is an equivalent of
Proposition 13 of [4] for Lipschitz surfaces:

1 In his paper, de Silva distinguishes between weak witnesses
and strong witnesses. Here, all witnesses are weak.

Lemma 2.1. Let S be a k-Lipschitz surface in R3, with
k < 1. Then, 8p 2 S, 8r · lr k (p), S \ B (p; r ) is a
topological disk.

Similar results exist in the planar case,with similar yet
simpler proofs (omitted here):

Lemma 2.2. Let S be a k-Lipschitz curve in R2, with
k < 1. Then, 8p 2 S, 8r · lr k (p), S \ B (p; r ) is
a topological arc. Moreover, the orthogonal projection
of S \ B (p; r ) onto Tk (p) is a segment whosevertices
are the orthogonal projections of the two endpoints of
S \ B (p; r ).

Theorem 2.2. If S is a k-Lipschitz curve in the plane,
with k < 1, and if L is an "-sample of S, with " <
lr k (S), then D jS (L ) is a polygonal curve homeomorphic
to S and at Hausdor®distance at most " from S.

3 Structural results

In this section, we highlight the relationship between
the witness complex and the restricted Delaunay trian-
gulation in 2d and in 3d. Let S be a k-Lipschitz man-
ifold, i.e. either a k-Lipschitz curve in the plane (Sec-
tion 3.1) or a k-Lipschitz surface in 3d (Section 3.2),
for some constant k ¸ 0. For convenience,we de¯ne
µ = arctan k 2 [0; ¼=2[. Let W be a ±-noisy ±-sample
of S and L ½ W an "-sparse"-sample of W . The con-
stants ± and " will be made explicit later on. Clearly,
L is a (± + ")-sample of S. We assumethat no vertex
of the Voronoi diagram of L lies on S, a condition that
can always be satis¯ed by an in¯nitesimal perturbation
of the points of L sinceS has non-zerocodimension. In
Sections3.1 and 3.2, we assumefurther that L is noise-
free (L ½ S). The caseof a noisy set of landmarks is
deferred to Section 3.3.

3.1 The planar case.

Theorem 3.1. Assumethat µ < arcsin 1
8 ¼ 7:2degand

that ± < minf 1¡ 8 sin µ
12 ; 3 cos µ¡ 2

4(9 cos µ+6) g lr k (S). If " satis¯es

max
n

12 sin µ
1¡ 8 sin µ ; 6

3 cos µ¡ 2

o
± < " < 1

8 lr k (S) ¡ 3
2 ±, then

CW(L ) coincides with D jS (L ).

The lower bound on " means that the set W of
witnessesmust be su±ciently dense2 compared to the
set L of landmarks, for the simplices of D jS (L ) to be
witnessed. An illustration is given in Figure 2, which
shows that CW(L ) contains D jS (L ) whenL is sparse(left
picture), whereaswhenL = W (" = 0), CW(L ) coincides
with the nearestneighbor graph of L , which hasnothing
to do with D jS (L ) (right picture). The upper bound on "

2 In particular, we have " > 6±.



Figure 2: A set of witnessessampling a smooth closed
curve with noise,and two di®erent subsetsof landmarks
(in green) together with their witness complexes.

ensuresthat the set L of landmarks is su±ciently dense,
so that the nice properties of D jS (L ) stated in Section2
hold, and that classicallocal arguments can be applied
to show that CW(L ) is included in D jS (L ).

The proof of the theorem proceedsin two stages:
¯rst, we show that D jS (L ) is included in CW(L ) (Lemma
3.1), then we show that CW(L ) is included in D jS (L )
(Lemma 3.2).

Lemma 3.1. Assume that µ < ¼
6 and that ± <

minf 1¡ 2 sin µ
2 ; 3 cos µ¡ 2

2(3 cos µ+4) g lr k (S). If " satis¯es

maxf 2 sin µ
1¡ 2 sin µ ; 6

3 cos µ¡ 2 g ± < " < 1
2 lr k (S) ¡ ±, then

D jS (L ) is included in CW(L ).

Proof. Let e = [u; v] bean edgeof D jS (L ). By de¯nition
of D jS (L ), the dual Voronoi edge of e intersects S at
somepoint c. Let r = d(c;u) = d(c;v) = d(c;L ), which
is at most " + ± sinceL is a (±+ ")-sample of S. Since
W is a ±-sampleof S, there is somew 2 W at distance
at most ± from c. Then, u and v are both included in
B (w; " + 2±).

Let p be any point of L n f u; vg. We will prove
that p =2 B (w; " + 2±), which means that w witnesses
e. Consider the portion of S that lies in B (c;r ).
Since r · " + ± < lr k (S), we know from Lemma 2.2
that S \ B (c;r ) is a topological arc whose endpoints
are u; v and whoseorthogonal projection onto Tk (c) is
the line segment [¹u; ¹v], where ¹u; ¹v are the orthogonal
projections of u; v. If p doesnot belong to B (c; lr k (S)),
then it does not belong to B (w; " + 2±) either, since
B (w; " + 2±) µ B (c;" + 3±), which by hypothesis is
included in B (c; lr k (S)). Otherwise, sincep 2 L nf u; vg,
S \ B (c;r ) contains c but not p, therefore [¹u; ¹v] contains
c but not the projection ¹p of p, becausethe projection
from S \ B (c; lr k (S)) to Tk (c) is one-to-one. As a
consequence,d(c;p) is at least d(c; ¹p) ¸ d(c; f ¹u; ¹vg) +
d( ¹p; f ¹u; ¹vg). Since L is " -sparse,we have d(p;u) ¸ " ,
d(p;v) ¸ " , and d(c;u) = d(c;v) ¸ d( u;v )

2 ¸ "
2 .

Moreover, since S \ B (c; lr k (S)) is the graph of a k-
Lipschitz univariate function de¯ned over Tk (c), wehave
d( ¹p; ¹u) ¸ d(p;u) cosµ, d( ¹p; ¹v) ¸ d(p;v) cosµ, d(c; ¹u) ¸

d(c;u) cosµ, and d(c; ¹v) ¸ d(c;v) cosµ. As a result,

d(c;p) ¸ d(c; ¹p) ¸ d(c; f ¹u; ¹vg) + d( ¹p; f ¹u; ¹vg)
¸ "

2 cosµ + " cosµ = 3
2 " cosµ:

This expressionis greater than " + 3± since" > 6±
3 cos µ¡ 2 ,

by hypothesis. It follows that p is farther than " + 3±
from c, and hencefarther than " + 2± from w. Thus, w
witnesses[u; v]. Similarly, every other edgeof D jS (L )
is witnessed by some point of W . Since L µ W ,
the vertices of D jS (L ) witness themselves,hencethe 1-
skeleton of D jS (L ) is included in CW(L ).

Finally, we assumed that no Voronoi vertex lies
on S, which implies that D jS (L ) has no simplex of
dimension two or more. Hence, D jS (L ) is equal to its
1-skeleton, which is included in CW(L ). This provesthe
lemma. ¤

The proof of the secondlemma usessimilar argu-
ments and is therefore omitted.

Lemma 3.2. Assume that µ < arcsin 1
8 and that ± <

1¡ 8 sin µ
12 lr k (S). If " satis¯es 12 sin µ

1¡ 8 sin µ ± < " < 1
8 lr k (S) ¡

3
2 ±, then CW(L ) is included in D jS (L ).

3.2 The 3d case. Unlike in the planar case,the wit-
nesscomplex and the restricted Delaunay triangulation
of points sampled from a surfacein 3d may not always
coincide, even in situations where the sets of witnesses
and landmarks satisfy strong sampling conditions. The
reasonis that, when a tetrahedron t of D(L) hasalmost
cocircular vertices, the chance for any of the diagonal
edgesof t to be witnessedby a point of W is small {
such a tetrahedron is calleda sliver in the literature [29].
In order to give an intuition of this fact, let us assume
for simplicit y that the surface is °at and that the ver-
ticesof t arecocircular, asin Figure 3 (left). The order-2
Voronoi diagram of the vertices is then degenerate,the
Voronoi cells of the diagonal edgesbeing reduced to a
singlepoint p that lies at the intersection of the edgesof
the diagram. Therefore, any diagonal edgecan be wit-
nessedonly by p, which meansthat the probabilit y for
any triangle of the quadrangleto be witnessedwhen W
is ¯nite is zero. As a result, holesappear with probabil-
it y onein the witnesscomplex,asillustrated in Figure 4
(left).

When the vertices of tetrahedron t are almost-
cocircular, as in Figure 3 (right), the order-2 Voronoi
cell of one diagonal edgeis empty, while the cell of the
other diagonal edgeis arbitrarily small. Thus, the prob-
abilit y for any triangle of the quadrangleto bewitnessed
when W is ¯nite is also arbitrarily small. Although it
is always possibleto perturbate the point set L so that
the points are in generalposition, guaranteeing that the



Figure 3: Order-2 Voronoi diagrams in the plane.

Figure 4: Witness complex and º -witness complex.

order-2 Voronoi cells of the edgesof D jS (L ) are su±-
ciently large requireslarge perturbations, which are not
tractable in practice since the underlying surface S is
unknown.

3.2.1 The º -witness complex. Our approach for
dealing with the above issue consists in relaxing the
de¯nition of the witness complex, so that the latter
includes the restricted Delaunay triangulation. This
requires to modify the concept of witness:

Definition 3.1. Given an integer m, a point w 2 W
and a simplex ¾= [p0; ¢¢¢; pl ] with vertices in L , w m-
witnesses¾if all the d(w; pi ) are amongthe m smallest
valuesof the set f d(w; q); q 2 Lg.

Observe that, in the casewhere m · l , somevertices of
¾ must be equidistant to w for w to m-witness ¾. In
particular, if m = 1, then all the points of ¾ must be
equidistant to w, which meansthat w is a strong witness
of ¾, or equivalently , that ¾ is a Delaunay simplex. If
m = 0, then no point w 2 W can m-witness ¾. In
[18], the authors use m-witnessesonly for edges.More
generally, we usethem for simplicesof all dimensions:

Definition 3.2. Given a countablesequence º of inte-
gers, the º -witnesscomplexof L relative to W , or CW

º (L )
for short, is the maximum abstract simplicial complex
with vertices in L , such that each i -face is º i -witnessed
by somepoint of W .

Since the simplices of CW
º (L ) have their vertices in L ,

their dimensionis at most jL j¡ 1. Hence,in the sequence

of integers, only º 0 through º j L j¡ 1 are used. There is
a natural relationship between CW(L ) and CW

º (L ): if
º i ¸ i + 1 8i , then CW

º (L ) contains CW(L ); in contrast,
if º i · i + 1 8i , then CW

º (L ) is included in CW(L ); thus,
CW(L ) = CW

º (L ) whenever º i = i + 1 8i . In addition, if
º i = 0 for somei , then the i -skeleton of CW

º (L ) is empty,
sincea simplex cannot be 0-witnessed,and therefore the
dimension of CW

º (L ) is at most i ¡ 1.

Theorem 3.2. Assume that µ < arccos(2sin ¼=7) ¼
29:7deg and that ± < cos µ¡ 2 sin ¼=7

3 cos µ+2 sin ¼=7
lr k (S). If " satis¯es

8 sin ¼=7

cos µ¡ 2 sin ¼=7
± < " < lr k (S) ¡ 3±, then, for any sequence

º of integers such that º 0 ¸ 1, º 1 ¸ 6 and º 2 ¸ 6,
D jS (L ) is included in CW

º (L ).

Proof. Since the vertices of D jS (L ) belong to L , which
is included in W , they witness themselves and thus
belong to CW

º (L ). In addition, since we assumedthat
no Voronoi vertex lies on S, D jS (L ) contains no simplex
of dimension three or more.

Let ¾ be a simplex (edge or triangle) of D jS (L ),
and let B (c;r ) be a Delaunay ball centered on S and
circumscribing ¾. SinceW is a ±-sampleof S, there is a
point w 2 W at distance at most ± from c. Then, ¾lies
in the ball B (w; r + ±), which is included in B (c;r + 2±).

Claim 3.1. The ball B (c;r + 2±) contains at most six
points of L .

Proof. SinceL is a (±+ ")-sample of S, the radius r of
the surfaceDelaunay ball is at most ± + " . Therefore,
r + 2± · " + 3±, which is less than lr k (S) according
to the hypothesis of Theorem 3.2. It follows that
S \ B (c;r + 2±) is the graph of a k-Lipschitz bivariate
function de¯ned over the plane Tk (c).

Let p1; ¢¢¢; pl be the points of L \ B (c;r + 2±). We
call ¹p1; ¢¢¢; ¹pl their orthogonal projections onto Tk (c).
SinceL is " -sparse,the pi are at least " away from one
another. And since they belong to S \ B (c; lr k (S)),
which is the graph of a k-Lipschitz bivariate function
de¯ned over the plane Tk (c), their projections ¹pi are at
least " cosµ away from one another. Moreover, since
B (c;r ) is a Delaunay ball, the pi are at least r away
from c, hencethe ¹pi are at least r cosµ away from c.

The rest of the proof dependson whether r ¸ " or
r < " . In fact, the overall ideasare the same,but some
technical details di®er.

² If r ¸ " , then, insideTk (c), c and the ¹pi arecenters
of pairwise-disjoint open disks of radius "

2 cosµ. Let
D c; D1; ¢¢¢; D l denote these disks. Since the pi belong
to B (c;r + 2±), the ¹pi belong to the disk D(c;r + 2±).
Therefore, D c; D1; ¢¢¢; D l form a congruent packing of
the disk D(c;r + 2± + "

2 cosµ). Now, according to the



hypothesesof the claim, we have:

r + 2±+
"
2

cosµ · "+ 3±+
"
2

cosµ <
"
2

cosµ
µ

1
sin¼=7

+ 1
¶

:

Hence, by a classical result on congruent packings of
disks [22, 27], there are at most seven disks of radius
"
2 cosµ packed in D(c;r + 2±). The fact that D c is one
of them implies that l · 6, which proves the claim in
the casewhere r ¸ " .

² If r < " , then c and the ¹pi are centers of
pairwise-disjoint open disks of radius r

2 cosµ. Let
D c; D1; ¢¢¢; D l denote these disks. Since the pi belong
to B (c;r + 2±), D c; D1; ¢¢¢; D l are included in D(c;r +
2± + r

2 cosµ). Now, B (c;r ) is a Delaunay ball, hence
its bounding spherecontains at least two points of L ,
which implies that r ¸ "=2. Moreover, the hypotheses

of the claim state that ± < "
4

³
cos µ

2 sin ¼=7
¡ 1

´
, which is at

most r
2

³
cos µ

2 sin ¼=7
¡ 1

´
. Therefore, D c; D1; ¢¢¢; D l form a

congruent packing of a disk of radius:

r + 2±+ r
2 cosµ < r + r

³
cos µ

2 sin ¼=7
¡ 1

´
+ r

2 cosµ

= r
2 cosµ

³
1

sin ¼=7
+ 1

´
:

It follows, by the same result as above on congruent
packings of disks, that l · 6, which proves the claim in
the casewhere r < " . ¤

Claim 3.1 implies that the vertices of ¾are among
the six nearest neighbors of w. Since this is true for
any edgeor triangle of D jS (L ), and sincethe vertices of
D jS (L ) belong to CW

º (L ), CW
º (L ) contains all the edges

and triangles of D jS (L ). This ends the proof of the
theorem. ¤

The next theorem guarantees that the simplices
of CW

º (L ) are not too large as long as the º i remain
bounded. It follows that the size of CW

º (L ) is linear in
jL j, sinceL is sparse.This property can be generalized
to higher dimensions, at the price of an exponential
growth of the constant factor. This motivates the
use of the witness complex instead of the Delaunay
triangulation.

Theorem 3.3. Assume that ±; " satisfy ± + " <
cos µp

6
lr k (S). Then, for any point w 2 W , the dis-

tance between w and its sixth nearest neighbor among
the points of L is at most ± +

³ p
6

cos µ + 1
´

(± + "). As
a consequence, for any sequence º of integers such that
º 1 · 6, the total number of simplices of CW

º (L ) is at

most 2O((±+ "=" cos µ )3 ) jL j, which is linear with respect to
jL j as far as µ is ¯xed and ± is within a constant factor
of " .

Proof. Let w 2 W and let ¹w be a point of S closest
to w. Since W is a ±-noisy sample of S, we have
d(w; ¹w) · ±. We call p1; ¢¢¢; pl the points of L that

lie in B
³

¹w;
³ p

6
cos µ + 1

´
(±+ ")

´
, and ¹p1; ¢¢¢; ¹pl their

orthogonal projections onto the plane Tk ( ¹w). We will
prove that l ¸ 6.

Since L is a (± + ")-sample of S, the balls B i =
B (pi ; ± + ") cover S \ B ( ¹w; (±+ " )

p
6=cos µ) (observe that,

amongthe balls of radius ±+ " centered at the points of
L , only the B i intersect B ( ¹w; (±+ " )

p
6=cos µ)). It follows

that, inside Tk ( ¹w), the disks D i = D( ¹pi ; ±+ ") cover the
orthogonal projection of S \ B ( ¹w; (±+ " )

p
6=cos µ). Now,

according to the hypothesis of the lemma, we have
(±+ " )

p
6=cos µ < lr k (S). Thus, by Lemma 2.1, S \

B ( ¹w; (±+ " )
p

6=cos µ) is a topologicaldisk whoseorthogonal
projection onto Tk ( ¹w) contains the projection D of the
intersection of B ( ¹w; (±+ " )

p
6=cos µ) with the coneof apex

¹w, of axis aligned with nk ( ¹w) and of half-angle ¼
2 ¡ µ.

Therefore, the D i cover D , which is a disk of center ¹w
and radius (±+ ")

p
6. Thus, the number of disks D i is

at least

Area(D)
Area(D i )

=
6¼(±+ ")2

¼(±+ ")2 = 6:

It follows that the number of points of L that lie in
B

³
¹w;

³ p
6

cos µ + 1
´

(±+ ")
´

is at least 6. As a result, the
distancefrom w to its sixth nearestlandmark is at most
d(w; ¹w) +

³ p
6

cos µ + 1
´

(±+ ") · ±+
³ p

6
cos µ + 1

´
(±+ ").

Let us now bound the size of CW
º (L ). Let p be

a point of L . From the above paragraph we deduce
that the edgesof CW

º (L ) incident to p are included in

balls of radii at most ± +
³ p

6
cos µ + 1

´
(± + "). Hence,

all edges belong to a common ball of center p and
radius r · 2± + 2

³ p
6

cos µ + 1
´

(± + "), which is equal to

2"
³

1 +
p

6
cos µ +

³ p
6

cos µ + 2
´

±
"

´
. The neighboring vertices

q1; ¢¢¢; ql of p in CW
º (L ) belong to B (p; r ) as well. Now,

sincethe points of L are farther than " from oneanother,
the qi are centers of pairwise-disjoint balls of radius
"=2, hence their number l is at most Vol( B (p;r ))

Vol( B (p; "=2)) ·

64
³

1 +
p

6
cos µ +

³ p
6

cos µ + 2
´

±
"

´ 3
= O

³
1

cos3 µ

¡
1 + ±

"

¢3
´

.

Since every simplex of CW
º (L ) incident to p is uniquely

de¯ned as a subset of f q1; ¢¢¢; ql g, the number of
simplices of CW

º (L ) incident to p is at most 2l , which
givesthe result. ¤

3.2.2 Manifold extraction. It follows from The-
orem 3.2 that CW

º (L ) contains D jS (L ), but Figure 4



(right) 3 shows that CW
º (L ) is not restricted to D jS (L )

and contains additional simplicesthat are small enough
to be º -witnessed. Nevertheless,it is possibleto extract
from CW

º (L ) a simplicial surfaceŜ isotopic to S and at
Hausdor®distance O(" + ±) of S. The extraction pro-
cedure takesa number %as parameter and proceedsas
follows:

1. Since the goal is to extract a 2-manifold, only
the 2-skeleton of CW

º (L ) is considered. Since it
may not be an embedded complex, we intersect
it with D(L). The result is a pure 2-dimensional
subcomplex C of D(L).

2. To guarantee that the output simplicial surface
has no skinny triangle, we delete from C all the
triangles of radius-edgeratio greater than %.

3. We greedily remove from C all the triangles in-
cident to sharp edges. An edgeis sharp if all its
incident triangles in C lie in a small wedgeof angle
at most ¼=2. This de¯nition applies in particular
to edgesthat are incident to one single triangle.

4. By a depth-¯rst walk in the dual graph of the re-
maining part of C, we extract the outer boundary
of C.

Observe that steps3. and 4. correspond to the manifold
extraction procedure of [1, 2]. As argued in these
papers, the outcome is a simplicial complex Ŝ whose
dihedral anglesare greater than ¼=2. Moreover, thanks
to step 2., the radius-edge ratios of the facets of Ŝ
are at most %. However, two issues arise: ¯rst, by
greedily removing non-Delaunay triangles or triangles
with sharpedgesor large radius-edgeratios from CW

º (L ),
steps 1. through 3. might end up with an empty
complex C. As a result, Ŝ may be empty. Second,
the outer boundary of C might not be an embedded
surfacesince it may contain multiple vertices or edges.
By proceeding with a depth-¯rst search on the dual
graph of C, step 4. duplicates multiple vertices and
edges,so that the resulting complex Ŝ is a simplicial
surfacewhoseimmersion in R3 coincideswith the outer
boundary of C.

Theorem 3.4. Let % = 1 + 1¡ 2 sin ¼=7

8 sin ¼=7
¼ 1:038. As-

sume that µ < arctan
p

3
1+4 % ¼ 18:6deg. If ±; " satisfy

8 sin ¼=7

cos µ¡ 2 sin ¼=7
± < " < cos3 µ

(cos µ+
p

6)(4+3 cos2 µ)%
p

3
lr k (S) ¡

2 cos µ+
p

6
cos µ ±, then, for any sequence º of integers such

that º 0 ¸ 1 and º 1 = º 2 = 6, the simplicial complex Ŝ
extracted from CW

º (L ) with parameter %is an embedded
surface isotopic to S and at Hausdor®distance at most³

±+
³ p

6
cos µ + 1

´
(±+ ")

´
%

p
3

cos2 µ from S.

3Thanks to a bug in Geomview, we can see some hidden
triangles in the vicinit y of slivers, such as in green areas.

The proof of the theorem (omitted here) is roughly the
sameas in Section 5 of [6]. Here is a short overview:

{ First, we show that the triangles of D jS (L ) are not
skinny and make large dihedral angles. This fact,
combined with Theorem 3.2, implies that complex
C contains D jS (L ) after step 3. above. We deduce
that Ŝ is not empty, since D jS (L ) is a manifold
without boundary, by Theorem 2.1.

{ Second,weuseTheorem3.3 (ii) of [6] to show that
Ŝ is a Lipschitz surface,which implies in particular
that it is an embeddedsurface.

{ Third, we useProposition 6.4 of [6] to bound the
Hausdor® distance dH (Ŝ; S) between Ŝ and S.
We show that dH (Ŝ; S) is small compared to the
Lipschitz radii of Ŝ and S.

{ Finally, we apply Theorem 6.2 of [9] to show that
Ŝ and S are isotopic.

3.3 Dealing with noisy data. Our previous results
hold provided that the set L of landmarks lies on the
curve or surfaceS. Theorem 3.5 below shows that this
condition is not mandatory, under somerestrictions on
the densities of W and L. Let ¸ 0 ¼ 0:078 denote the
smallest positive root of the polynomial 64̧ 6 + 832̧ 5 +
1008̧ 4 ¡ 160̧ 3 ¡ 4¸ 2 ¡ 12̧ + 1, and for any µ 2 [0; ¼

2 ], let
¸ (µ) be the smallestpositive root of 16(4sin2 µ¡ 1)¸ 6 +
32̧ 5¡ 12(2+ 3sin2 µ)¸ 4+ 8¸ 3+ (4 sin2 µ+ 63)̧ 2+ 64̧ ¡ 16.

Theorem 3.5. Let S be a k-Lipschitz surface in R3,
and let L be a ±-noisy "-sparse (± + ")-sample of S.
Assumethat ±; " satisfy the following conditions, where
µ = arctan k:
8
>>>>>:

± < min
n

1
4 ;

p
2¡ 4 sin µ

2(
p

2+4 sin µ)
; cos(2µ)¡ 2 sin µ

2(cos(2 µ)+2 sin µ) ; ¸ 0; ¸ (µ)
o

"

± < min
n

1
14 ¡ "

2lr k (S) ; 1
6 ¡ 7"

12lr k (S)

o
lr k (S)

Then, there exists a k0-Lipschitz surface S0, passing
through the points of L , isotopic to S, and at Hausdor®
distance at most " + 3± from S, such that:
8
>>>>>>>>>:

k0 = tan

0

@arcsin

0

@ 4((1+2 sin µ) ±
" +sin µ)

2 sin
µ

arcsin
1¡ 2 ±

"
2(1+2 ±

" )
¡ 2 arcsin

2 ±
"

1¡ 2 ±
"

¶

1

A

1

A

lr k 0(S0) ¸ lr k (S) ¡ (2" + 7±) > 1
2 lr k (S)

If the set W of witnessesis a ±-noisy ±-sample of
a k-Lipschitz surface S, for some su±ciently small ±
(as comparedto lr k (S)), then Theorem 3.5 ensuresthat
there exists an interval of values of " such that any "-
sparse"-sample L of W lies on a k0-Lipschitz surface
S0, with k0 = O(k + ±=" ) and lr k (S0) = ­(lr k (S)). The
structural results of Section 3.2 apply then to S0, W ,
L . And sinceS0 is isotopic to S and closeto it for the
Hausdor® distance, these results hold for S, W , L as



well, with slightly worse constants. There exists also a
version of Theorem 3.5 for Lipschitz curves, which can
be combined with the structural results of Section 3.1.

The proof of the theorem (omitted here) consists
in building an isotopy Á : [0; 1] £ S ! R3 such
that S0 = Á(1; S) is a k0-Lipschitz surface passing
through the points of L , with k0 = O(k + ±=" ) and
lr k 0(S0) = ­(lr k (S)). Intuitiv ely, sincethe points of L lie
" away from one another, with " large comparedto the
amplitude ± of the noise, the surfaceS can be snapped
onto the points of L without changing its normals too
much. This can be easily seenon simple examples,such
as for instance when S is the x-axis in R2 (in this case,
the snapped curve is the polygonal chain connectingthe
points of L in the order of their abscissae).

4 Application to reconstruction

4.1 Algorithm. The algorithm works in any arbi-
trary metric space. It takes as input a ¯nite point set
W , identi¯ed as the set of witnesses,and an optional
countable sequenceº of integers,whosedefault value is
º i = i + 1 8i (which correspondsto CW

º = CW). The algo-
rithm constructs a set L µ W of landmarks iterativ ely,
starting with L = ; , and in the meantime it maintains
CW

º (L ). At each iteration, the witness lying furthest
away from L is inserted in L , and CW

º (L ) is updated as
described below. The processstops when L = W . The
output of the algorithm is either the one-parameterfam-
ily of complexesCW

º (L ) built throughout the process,or
simply the diagram of their Betti numbers, computed
on the °y using the persistencealgorithm 4 of [31]. With
this diagram, the user can determine the scaleat which
to processthe data: it is then easyto generatethe cor-
responding subset of landmarks (the points of W have
been sorted according to their order of insertion in L)
and to rebuild its witness complex.

4.2 Up date of CW
º (L ). Our strategy to update

CW
º (L ) relies on the following observation: when a wit-

nessp is inserted in L , every simplex that appears in
CW

º (L ) is incident to p, whereasevery simplex that dis-
appears from CW

º (L ) has a face that is no longer º -
witnessed. It follows that the º -witnessesof all these
simplicesbelong to the reverse· -nearest landmarks5 of
p, where · = minfj L j; maxi º i g. Hence,CW

º (L ) can be
updated by performing a reverse · -nearest landmarks
search on p, and then, for each witness w in the out-
come,a · -nearest landmarks search on w, to determine

4The ¯ltration used in [31] is rebuilt at each iteration, since
some simplices are deleted from our complex CW

º (L ).
5These are the witnesses that have p among their · -nearest

landmarks.

which simplicesto insert or delete from CW
º (L ). A num-

ber of dynamic data structures exist that can perform
thesequeriese±ciently { see[15] for a survey. Note how-
ever that · can be as large as jW j, a casein which the
above queriestake linear time. Moreover, when º i ¸ jL j
8i , CW

º (L ) coincideswith the complete hypergraph of L
and hencehas an exponential size. Nevertheless,in Eu-
clidean spaceRn , · is more likely to be a constant de-
pending (exponentially) on n, which reducesthe sizeof
CW

º (L ) to O(jL j), by Theorem 3.3. The total time spent
to maintain CW

º (L ) is then O(jW j2), since any newly-
created landmark has £( jW j) reverse · -nearest land-
marks (these can be detected naively by an exhaustive
search on the set W ), each of which witnessesa constant
number of simplices (these can be found by maintain-
ing the lists of · -nearest landmarks of the witnesses).
We conjecture that it should be possibleto reduce the
time complexity to O(jW j log jW j), under somesparse-
nesscondition on W .

4.3 2d and 3d cases. We take º = (1; 2; 3) in 2d
and º = (1; 6; 6; 4) in 3d, as prescribed by the theory.
Moreover, we replace CW

º (L ) by its intersection with
D(L). This makessensebecause,D jS (L ) being a subset
of D(L), Theorems3.1 and 3.4 hold the sameif CW

º (L ) is
replacedby CW

º (L ) \ D(L ). The advantage of the latter
complex is that it can be stored as a subcomplex of
D(L), which allows to speed-upthe (reverse) · -nearest
landmarks queries in practice. Another thing in 3d is
that we also maintain the subcomplex Ŝ extracted by
the procedureof Section 3.2.2.

4.4 Theoretical guaran tees. Let L (i ) denote the
set L at the end of iteration i of the algorithm. Calling
"(i ) the minimum number such that L (i ) is an "(i )-
sampleof W , we have the following:

Lemma 4.1. At any iteration i , L (i ) is an "(i )-sparse
"(i )-sampleof W .

Proof. At each iteration j · i of the algorithm, the
witnessp(j ) farthest from L(j ¡ 1) is inserted in L(j ¡ 1).
Right beforethis insertion, L (j ¡ 1) is an "(j ¡ 1)-sample
of W . This meansthat the distancefrom p(j ) to L(j ¡ 1)
is " (j ¡ 1). SinceL keepsgrowing during the process,we
have "(j ) ¸ " (j + 1), 8j · i . Thus, each point inserted
in L beforeor at iteration i is at least " (i ¡ 1) away from
L at the time of its insertion. This implies that L (i ) is
" (i ¡ 1)-sparse,and therefore also "(i )-sparse. ¤

From this lemma and from Theorems 3.1, 3.4 and
3.5, we deducethat, if W is a ±-noisy ±-sampleof some
k-Lipschitz manifold S in R2 (resp. R3), for su±ciently
small valuesof ± and k, then there exists an interval of



Figure 5: Diagram of Betti numbers of Ŝ for the
Tanglecube point set.

valuesof " (i ) such that CW(L (i )) (resp. Ŝ) is a correct
approximation of S. Therefore, the topological type
of CW(L ) (resp. Ŝ) stabilizes for sometime during the
courseof the algorithm, and sodo topological invariants
such ashomologygroups. The duration of the stabilized
phasedependson the ratio ±=lr k (S).

These guarantees hold provided that the input
point set W is a ±-noisy ±-sample of the underlying
manifold S, for somesu±ciently small value of ±. This
is equivalent to saying that the Hausdor® distance
betweenW and S is bounded by ±. In particular, there
is no sparsenesscondition on W , and the amplitude of
the noisecan be as large as the sampling density.

4.5 Exp erimen tal results and discussion. Fig-
ure 5 shows three main phasesin the evolution of the
Betti numbersof Ŝ (the x-axis represents 1=" ( i ) on a log-
arithmic scale): ¯rst, their behaviour is erratic and the
topology of Ŝ keepschanging, because"(i ) is too large
compared to lr k (S); then, the Betti numbers stabilize
and a plateau appears in the diagram, as predicted by
the theory; ¯nally , " (i ) becomestoo small comparedto
±, and holes appear in the complex, which doom the
manifold extraction process.Somesnapshotsof Ŝ dur-
ing the three phasesare given at the bottom of Figure 5.
The plateau in Figure 6 is smaller, due to the fairly high
value of ± in the data set. Observe that the topological
type of Ŝ on the plateau (genus = 6) coincideswith the
oneof the original physical object, but not with the one

Figure 6: Diagram of Betti numbersof Ŝ for the Happy
Buddha point set.

of the model in the repository (genus = 104). The rea-
son is that, due to noiseand holesin the data, classical
reconstruction techniques fail becausethey look at the
point cloud at one scaleonly. In contrast, our method
provides reconstructionsat various scalesand generates
plateauswhenever the topological type is stable enough
to be plausibly that of the underlying object. For in-
stance, in Figure 6, a new plateau appears right be-
fore the data structure becomesunstable: this plateau
indicates that a new handle (shown on the model on
the left) has been detected. Another example is given
in Figure 1, where the diagram has two well-separated
plateauscorresponding to two plausible reconstructions:
a torus, and a simple closedcurve drawn on that torus.
To handle the change in dimension (shown at the bot-
tom row of the ¯gure), we maintained CW

º (L ) for both
º = (1; 2; 3; 4) and º = (1; 6; 6; 4) simultaneously, and
determined at each step the complex to keepaccording
to their Betti number ¯ 2.

5 Conclusion

Wehaveintro duceda newreconstruction method, based
on the witnesscomplex. This method usesinter-sample
distances alone and can therefore be applied in any
metric space.Moreover, it standsin sharp contrast with
previouswork in the area,sinceit is multiscale and gives
someinsights on the various plausible topological types
of the original object. We believe that this approach
to manifold reconstruction is highly practical and has
a number of potential applications, such as for instance
topological noise removal or mesh compression. As a
side product, in order to prove our algorithm correct
on Lipschitz curves and surfaces,we have highlighted



the relationship between the witness complex and the
restricted Delaunay triangulation in 2d and 3d.
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