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Characterization of transient intermediate or transition states is crucial for the description of
biomolecular folding pathways, which is, however, difficult in both experiments and computer
simulations. Such transient states are typically of low population in simulation samples. Even for
simple systems such as RNA hairpins, recently there are mounting debates over the existence of
multiple intermediate states. In this paper, we develop a computational approach to explore the
relatively low populated transition or intermediate states in biomolecular folding pathways, based on
a topological data analysis tool, MAPPER, with simulation data from large-scale distributed
computing. The method is inspired by the classical Morse theory in mathematics which
characterizes the topology of high-dimensional shapes via some functional level sets. In this paper
we exploit a conditional density filter which enables us to focus on the structures on pathways,
followed by clustering analysis on its level sets, which helps separate low populated intermediates
from high populated folded/unfolded structures. A successful application of this method is given on
a motivating example, a RNA hairpin with GCAA tetraloop, where we are able to provide structural
evidence from computer simulations on the multiple intermediate states and exhibit different
pictures about unfolding and refolding pathways. The method is effective in dealing with high
degree of heterogeneity in distribution, capturing structural features in multiple pathways, and being
less sensitive to the distance metric than nonlinear dimensionality reduction or geometric
embedding methods. The methodology described in this paper admits various implementations or
extensions to incorporate more information and adapt to different settings, which thus provides a
systematic tool to explore the low-density intermediate states in complex biomolecular folding
systems. © 2009 American Institute of Physics. �DOI: 10.1063/1.3103496�

I. INTRODUCTION

The folding of biomolecules is a classic biophysical
problem. Proteins and nucleic acids are synthesized as linear
polymer chains. They must then spontaneously and rapidly
fold into their three-dimensional native states. The folding
process is determined by the underlying free energy land-
scape. These landscapes may have local minima on large-
scale energy barriers corresponding to intermediates or mis-
folded states. Characterizing these states is critical for a full
understanding of biomolecular folding. Experimental studies
may point to the existence of such states but are usually

unable to provide high resolution structural information due
to the transience and/or heterogeneity of such states. Com-
puter simulations have proven useful for sampling this com-
plex high-dimensional space while yielding structures at full-
atom resolution. However, these simulations tend to generate
millions of configurations. The volume and high-dimensional
nature of the output make it extremely difficult to discern the
structure of the data.

One common approach to dealing with computer simu-
lation results is to apply K-means clustering to the entire data
set. However, K-means clustering suffers from a number of
important limitations. First, it is limited by the need to
specify the number of states from the beginning. Second, it
tends to create spherical states. The relevant states of the free
energy landscape, on the other hand, may be nonconvex. In
this case, K-means clustering will tend to lump unrelated
configurations together or split related configurations into
separate states. This limitation may be overcome by splitting
the configurations into many small states and grouping them
together using various metrics that allow nonconvex states,
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such as in Ref. 1. There is another widely used clustering
method, single linkage, which may overcome these issues in
K-means. Unfortunately, identifying sparsely populated in-
termediate states is still difficult. Simulation data tend to be
heavily dominated by the most stable states, such as the
folded and unfolded states, and single-linkage clustering of
the entire data set tends to pick up densest states only and
hardly distinguish the intermediates from noise.

Recently, geometric embedding techniques, such as non-
linear dimensionality reduction,2–7 have been explored as a
means to overcome the dimensionality hurdle in complex
biomolecular systems. For example, ISOMAP �Ref. 2� has
been applied to protein folding8 and Laplacian eigenmap4

has been applied to the dynamics of biological networks.9

This class of techniques maps the data in high-dimensional
spaces to a low-dimensional space by preserving some local/
global metric relationship among neighboring data points. In
this way, one can easily visualize data and possibly gain
important insights. For instance, the new embedding coordi-
nates may be biologically relevant reaction coordinates.8

However, the performance of these geometric embedding
techniques will suffer from the high degree of heterogeneity
in distribution and be sensitive to the choice of the distance
metric.

One efficient strategy to address these issues is to stratify
the data into density level sets and study its topological fea-
tures such as clustering which are less sensitive to the metric
than geometric methods. High-density levels will contain the
dominant states, such as the folded and unfolded states,
while less populated states, such as intermediates, will oc-
cupy the low-density levels. Clustering on level sets of simi-
lar density will be less affected by the distributional hetero-
geneity and thus effectively disclose structural information
about intermediates. This idea of stratification is reminiscent
of Morse theory, which provides a general machinery for
studying the topology of high-dimensional manifolds by
looking at level sets of some nicely behaved function.10 In-
spired by Morse theory, Singh et al.11 recently introduced
MAPPER, a topological data analysis tool for high-
dimensional data sets.

MAPPER is a way to visualize and cluster high-
dimensional data. In its simple form, a filter function is used
to decompose the data into overlapping level sets and clus-
tering is then carried out in each of them. A graph is then
generated by connecting clusters in neighboring level sets
with an edge if they have nonempty overlapping. If an en-
ergy function is taken as the filter, the graph generated by
MAPPER will provide the same kind of topological informa-
tion as a disconnectivity graph of the energy landscape.12

Moreover, in MAPPER, one can design other filter functions
besides energy, so that this method can be applied to study a
wide variety of data sets even including nonequilibrium
simulation data. In its extended form, MAPPER can return a
simplicial complex with high-dimensional topological infor-
mation about the data. The method is computationally effi-
cient and amenable to parallelization.

In this work we demonstrate the applicability of MAPPER

in its simple form to the biomolecular folding problem. We
begin with a discussion of MAPPER itself from a perspective

of Morse theory and then present the details of a filtering
function that is well suited for biomolecular folding prob-
lems, the conditional density filter. This filter puts important
weights on conformations generated from simulations. If ev-
ery conformation is weighed equally, the filter is an estimator
of the density of sampled conformations. Furthermore, by
weighing more heavily those conformations close to a state
of interest, the filter facilitates the identification of interme-
diate states leading up to it. We then describe the use of
single-linkage clustering within level sets to allow the iden-
tification of an unspecified number of nonconvex states. Fi-
nally, we discuss the application of MAPPER to the folding of
a small RNA hairpin, which gives some structural evidence
from computer simulations in support of the multistate
hypothesis.13 The biological implications of the MAPPER re-
sults are discussed in Ref. 14 elsewhere. We also briefly
discuss the advantages of MAPPER over nonlinear dimension-
ality reduction techniques. In the future we hope to explore
the combination of those geometric embedding techniques
with MAPPER in order to take advantage of the strengths of
both approaches.

II. MATERIALS AND METHODS

A. MAPPER: A tool for topological data analysis

One way to reduce the computational complexity in the
study of massive data sets is to decompose the data by clas-
sifying the data into groups and doing analysis on each of the
group individually instead of performing analysis on the
whole. This strategy is amenable for parallel computation,
which is particularly important for studies of biomolecular
folding, where a great amount of configurations are normally
generated.

Here we pursue this idea in the particular case where the
decomposition is induced by the choice of some filter func-
tion on the data set, h :X→�. In this paper, we will only
consider filters that take values in the real line, although the
MAPPER methodology is equally applicable for filter func-
tions taking values in higher dimensional space, or even
spheres, tori, or any other topological space. With this
choice, we introduce MAPPER from a perspective of Morse
theory, which differs from the original paper11 but discloses a
deeper inspiration.

Morse theory10 tells us that when h :X→R is some
nicely behaved function, topological information of X can be
inferred from the level sets h−1���. Such nice functions are
called Morse functions, i.e., those smooth functions with
only nondegenerate critical points; in other words, the Hes-
sian at each critical point where the gradient vanishes has full
rank. Morse functions are generic in the sense that they are
dense in the space of smooth functions, as well of continuous
functions. Hence every continuous function can be approxi-
mated arbitrarily well by Morse functions. Morse theory is
an extremely powerful tool to analyze the topology of high-
dimensional manifolds, which lies in the heart of proving the
celebrated Poincare conjecture of dimension no less than 5.15

The simplest example in this spirit may be Reeb graph,16

by contracting to points the connected components within
level sets h−1���, illustrated as Fig. 1�a�. This simple scheme
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turns out to be useful in various fields under different names,
e.g., contour trees in computational geometry17 and cluster
trees in statistics.18–20

MAPPER �Ref. 11� extends this construction to incorpo-
rate the discrete setting where X is a finite set of data points
in high-dimensional spaces or metric spaces. First, instead of
working with the level set of a single value which is difficult
to capture in discrete settings, MAPPER considers the preim-
age of subinterval h−1��a ,b��. Second, it replaces by cluster-
ing the contraction of connected components in continuous
settings. Specifically, the procedure of MAPPER used in this
paper is as follows.

�1� Level-set formation. Cover the range of h :X→R by a
set of subintervals which overlap in neighbors, i.e., Ui

= �ai ,bi� with Ui�Ui+1�� and Ui�Uj �Uk=�, and
stratify X into level sets by taking inverse images
h−1��ai ,bi��.

�2� Clustering. On each level set h−1��ai ,bi��, construct the
connected components or point clusters.

�3� Graph representation. Represent each component or
cluster by a node. Add an edge between a node pair
whenever they have nonempty intersection.

MAPPER thus returns an undirected graph representing
the connectivity information between data clusters across
level sets h−1��ai ,bi��. See the example in Fig. 1�b�. Note that
those degree-one nodes lie in the intervals containing local
minima/maxima and the branching �degree-three� nodes lie
in the intervals with saddle points, a sort of critical points.

More generally, if the filter value range � takes some
higher dimensional space or other topological spaces, MAP-

PER may return a simplicial complex which is, however, not
pursued in this paper. This construction can easily yield a
multiresolution structure by choosing subintervals of differ-
ent granularities, which helps handle noise.

The key choice in MAPPER will be the filter map h :X
→�. In fact, the name, MAPPER, was coined to emphasize
the importance of choosing such a map. There is no universal
scheme for this choice, which may vary from application to
application. In Ref. 11 some examples are presented with the
choice of density function and a certain eccentricity function
measuring data depth as filters. In the following, we will
discuss it in detail in the setting of biomolecular folding
problems, with a particular example in RNA hairpin folding.

B. MAPPER design in biomolecular folding

Simulation data in biomolecular systems produce mas-
sive data in high-dimensional space and exhibit heterogene-
ity in distributions. The general procedure of MAPPER above
is adapted toward such challenges. The first crucial design is
to construct filters based on conditional density functions
estimated from the data, which effectively enable us to focus
on important local regions in configuration spaces and sepa-
rate less populated pathways from the overwhelmed states.
In clustering we choose the single-linkage method to capture
possibly nonconvex clusters. Below we give a detailed de-
scription on these particular implementations.

1. Conditional density filters for MAPPER

Our key construction of filters here is based on condi-
tional density functions estimated from data, conditioning on
the states of interests. For example, in the study of folding
process, we extract conformations from folding events and
focus on the region close to folded states, while in unfolding
process we draw samples from unfolding events and pay
more attention to the zone around extended states. Simula-
tion trajectories of those processes are often dominated by
stochastic fluctuations around the initial states. It is near the
target states that one may observe interesting structural in-
formation about pathways.

Although the simulation data of biomolecular systems
often lie in a high-dimensional configuration space, the de-
gree of freedom is much less due to the constraints and co-
operation among atoms in folding process. It is often ex-
pected that the pathway samples are concentrated around
some low-dimensional manifolds which can be described by
a relatively small number of intrinsic reaction coordinates.8

The existence of multiple pathways as in the example of this
paper may lead to holes in such manifolds with nontrivial
topology. Note that in the continuous case, the Reeb graph of
a �unconditional� density function defined on the Euclidean
space Rn turns out to be trivially a tree. However, conditional
density functions adopted here may restrict on interesting
regions where the loops in the Reeb graph might shed light
on the hole structures. Reconstructing the low-dimensional
topology of densely sampled regions, thus, may disclose the
nature of multiple pathways. In theory, it is possible to effi-
ciently recover the topology from samples of such low-
dimensional manifolds.21 In this paper, through conditional
density filters we approach such manifolds via data level sets
and extract some low-dimensional topological features
which provide structural evidence on the existence of mul-
tiple pathways.

h
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a1

b1
a2

a3

b3
a4

b4

b5

b2h

(a)

(b)

FIG. 1. �Color� �a� Construction of Reeb graph; �b� construction of MAPPER.
h maps each point on torus to its height.
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Here we describe a general approach to construct condi-
tional density filters, which will be specialized in Sec. III
with the application to RNA hairpin folding.

• Draw random samples S�X from the folding events.
Choose importance weights on S, w�x��0, with higher
values on interested states.

• Define the filter function by

h�x� = − log
�y�Sw�y�K�x,y�

�y�Sw�y�
, �1�

where the kernel function is defined by

K�x,y� = e−d��x,y�/�, �2�

where d�x ,y� is some distance function between con-
figurations x and y, ��0 is the bandwidth, and ��0 is
the exponent. For example, the Euclidean distance with
�=2 is used in the case of Gaussian kernels or the
Hamming distance between structural contact maps
with �=1 is used later in this paper.

• Resample from S according to the new distribution,

p�x� =
w�x�

�xw�x�
.

To avoid the normalization in large data sets, we can use
the rejection method or extended,22 e.g., a sequential Ber-
noulli experiments where a new configuration x is accepted
with probability q�x�=w�x� /max�w�x��.

These configurations, together with the filter function
�1�, will be the inputs of MAPPER procedure shown in the last
section.

Filter �1� assumes a density function in Boltzman form
f�x�= �1 /Z�e−h�x�, with partition function Z=�xe

−h�x�. Thus up
to a constant filter �1� approximates the free energy near the
folded state. Since only order information of h�x� will be
used below, it leads to the same result choosing any mono-
tone transform on h, e.g., �y�Sw�y�K�x ,y�. Our construction
is equivalent to a kernel density estimator which can be re-
placed by other methods.23

2. Level-set formation in MAPPER

To increase the robustness of MAPPER allowing more er-
rors in density estimation, we only use the order information
of filter �1� to construct level sets.

Level-set formation. Order the samples according to val-
ues of h�x� and classify the samples into m consecutive over-
lapping groups of equal or similar size, whose filter value
ranges �ai ,bi� cover the range of h.

Up to an arbitrary small perturbation, a real valued func-
tion h :X→R induces a linear order on samples. Therefore
any monotone transform on h�x�, such as c1 exp c2h�x�, leads
to the same level sets.

3. Clustering in MAPPER

The graphical representation of MAPPER depends on the
choice of clustering methods. MAPPER itself does not place
any prerequisite on the clustering algorithm. In the study of

biomolecular folding such as RNA hairpins, our purpose is to
identify those connected components in free energy or den-
sity level sets, which might be of nonconvex shapes and
whose numbers are unknown to us beforehand. Single-
linkage clustering is the simplest choice to meet those two
features.

• On each level set, construct a weighted graph, with
nodes for configurations and edge weights as pairwise
distances.

• Find a minimal spanning tree �MST� of such a graph.

• Find a threshold value for edges. We construct a histo-
gram of MST edge weights with k bins. Once some
empty bins are found from top bins containing p longest
edges, we set the threshold to be the center of the first
empty bin. Otherwise, set the threshold the maximal
edge �diameter�.

• Truncate the graph by breaking those edges greater than
the threshold, dividing the graph into connected compo-
nents.

• Prune those components of size no more than q.

Single linkage will separate those clusters where within
each cluster two points can be joined by a path consisting of
short edges, but relatively longer edges are required to merge
the clusters. When we draw random samples from compact
connected components in an Euclidean space, the distances
between configurations within the same components will
drop down to zero as the sample size grows. Hence the dis-
tances across components will be kept in the longest edges
and can be separated from a large amount of short edges.
Thresholding above tries to capture such a gap. Truncation
may create several components/clusters of different sizes,
where pruning helps reduce the noise and identify those
dominant components.

In the continuous setting, single-linkage clustering will
consistently locate those connected components when the
samples are dense enough.18 Such a feature makes it a desir-
able choice for MAPPER,11 as well as density cluster trees.19,20

However, in the latter part of this paper, we will meet a
discrete configuration space, i.e., the space of contact maps
as undirected graphs. Thus we need to explain in what sense
we extend the “connected components” in such a discrete
setting.

Equipped with a metric, e.g., Hamming distance, the dis-
crete configuration set can be viewed as a weighted complete
graph, where each node represents a structure and the weight
of an edge is the distance between its end points. Single-
linkage clustering first builds up a MST of this graph and
then truncates the MST by keeping the edges with the length
less than a given threshold, which breaks the MST into sev-
eral connected components or clusters. In this way, single
linkage computes the components where two nodes within a
component are joined by a path consisting of the short edges,
but relatively longer edges are required to merge different
components.

One may also consider other clustering schemes, such as
k-means, which is widely used in clustering the configura-
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tions in the biomolecular folding simulations. In contrast to
single linkage, k-means attempts to find the clusters such that
within cluster any two nodes are connected by a short edge,
rather than by a path made up of short edges. Therefore,
roughly speaking, k-means attempts to find spherical-shape
clusters while single linkage can discover snake-shape clus-
ters. Both may provide useful but different kinds of informa-
tion in biomolecular folding problems. However, k-means
needs one to specify the number of clusters a priori while the
single linkage does not. This is a shortcoming for k-means
since we do not have such information in advance. So in this
paper, single linkage is chosen as the basic scheme and
k-means is only used in comparative studies, when we al-
ready know the number of clusters from single linkage.
Other choice of clustering methods includes average linkage,
complete linkage, spectral clustering,24,25 etc., which are,
however, not pursued in this paper.

III. RESULTS AND DISCUSSIONS

Recently, Ref. 14 performed serial replica exchange mo-
lecular dynamics26,27 �SREMD� simulations of the GCAA te-
traloop �5�-GGGCGCAAGCCU-3�� on the Folding@home
distributed computing platform. The hairpin motif consists of
a primarily Watson–Crick base-paired stem capped with a
loop of unpaired or non-Watson–Crick base-paired nucle-
otides, as shown in Fig. 2�a�. Despite their simple structures,
there is some debate over whether or not there are interme-
diate states in the folding of hairpins, e.g., see Ref. 13.

With the technique developed in this paper, we are able
to disclose the structures of multiple intermediate states on
the folding pathways, which in the first time provides struc-
tural evidence from computer simulations about RNA hairpin

folding pathways. The biological implications of this discov-
ery are discussed in detail by Bowman et al.14 Here, we only
focus on details of data analysis.

The RNA molecule examined here has 389 atoms. In-
cluding the solvent there are about N=12 000 atoms in the
system, yielding 3N=36 000 parameters. To reduce the di-
mensionality of this large space, we chose to represent each
configuration with a contact map. Contact maps can faith-
fully describe the base-pair interactions in the stem, which
provides important structural information of RNA hairpin
folding. A contact map is a bit string specifying pairs of
contacting residues that are not immediately adjacent in the
sequence. Following Bowman et al.,14 we define the native
state as any conformation with all four stem base-pair con-
tacts formed. Each of these base-pair contacts is referred to
as a native contact. For example, Fig. 2�a� shows a native
state whose contact map model is illustrated in Fig. 2�b�. An
unfolding event is defined as the set of conformations be-
tween the first point with no contacts between any two resi-
dues on opposite sides of the stem and the first preceding
point with four native contacts. A refolding event is defined
as the set of conformations between the first point with no
contacts between any two residues on opposite sides of the
stem and the first subsequent point where the number of
native contacts is 4.

A. Structural analysis by MAPPER

MAPPER is an ideal tool for such a problem due to the
enormous size of the simulation data set, the high probability
of nonconvex states, and the need to identify folding inter-
mediates with low populations relative to the folded and un-
folded states. Application of MAPPER to this data set revealed
a number of intermediate states.

The data generated from SREMD simulations are nor-
mally dominated by the folded and unfolded structures. For
example, a typical refolding trajectory starts from an un-
folded state, undergoing a significant period of stochastic
fluctuation around that, then proceeds gradually to the folded
state. It is in the neighborhood of folded states that interest-
ing structural information about folding pathways are exhib-
ited. Therefore, in the construction of the conditional density
filters, we treat folding and unfolding separately. In the study
of folding pathways, we take configurations from refolding
events, and then weight heavily a neighborhood around the
native states. However, in the study of unfolding pathways,
we sample from unfolding events, and focus on a neighbor-
hood of the unfolded states.

The following parameters are used to produce the results
in Fig. 3. We use the Hamming distance dH�x ,y� between a
pair of contact maps in the conditional density function �Eq.
�1�� and choose �=�=1 in kernel �2�. For simplicity, the
important weights are set to one within the neighborhood of
the state of interest and zero otherwise. In refolding events,
we choose a neighborhood within seven-bit Hamming dis-
tance from the native state in Fig. 2. In unfolding events, a
neighborhood of the extended state is chosen as the set of
configurations with no more than six nonadjacent contacts
formed. In the level-set formation, the filter is divided into

C6

G5

A7

A8

2 41 3

C11

C4 G3 G2

C10G9 U12

G1

(a)

(b)

FIG. 2. �Color� �a� NMR structure of the GCAA tetraloop. �b� Contact map
for the native state. Bases are numbered from 1 to 12 and native basepair
contacts �dotted lines� are numbered 1–4.
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eight levels of equal size with 25% overlap. In the clustering,
a histogram with five bins is used, with thresholding from
top bins consisting largest p=20% edges and the cluster
pruning size q=2% of the level sample size. More details on
parameter tuning will be provided in Appendix B.

The graphical output of MAPPER with such parameters
shows distinct pictures about folding and unfolding path-
ways. Unfolding has a single dominant pathway character-
ized by unzipping from the end base pair �Fig. 3�a��, while
folding process has two dominant pathways, passing through
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FIG. 3. �Color online� Graphical representation of pathways by MAPPER. �a� Unfolding pathway. �b� Folding pathway. In both cases, the top row graphs are
the outputs from MAPPER, while the bottom row depicts the mean contact maps of the corresponding clusters. For clarity in mean contact maps, we drop those
mean contacts lower than 0.4. The node colors from red to blue indicate the density from high to low, and the labels �e.g., 100%� show the percentage of
configurations of the same level included in the cluster corresponding to the node. We dropped all the clusters of size smaller than 3% of the level size. �a�
shows that unfolding has a single dominant pathway characterized by unzipping from the end base pair. �b� shows that folding process has two dominant
pathways, passing through either the formation of the closing base pair or the end base pair. A noisy cluster consisting 3% of the level size was also shown
in �b�, which accounts for reptation, i.e., sliding of the two strands of the stem.
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either the formation of the closing base pair or the end base
pair �Fig. 3�b��. Such an observation reveals a number of
intermediate states in the folding process, which supports the
multistate hypothesis. It is interesting to notice in Fig. 3 that
conditional density filters seem good indicators of reaction
coordinates, suggesting that the folding/unfolding processes
start from the densest zone and become sparser as the reac-
tions proceed.

B. Verifying the kinetic separation of the two pathways

Are the two pathways in refolding �Fig. 3�b�� are truly
separate pathways or just the artifact of noise? This question
can be answered from the kinetic information of simulation
trajectories by computing the transition probability. Note that
our purpose here is not to create a Markov model1 for meta-
stable states, but investigate how the two intermediate states

in refolding pathways are kinetically connected. Therefore
the shortest lag time, 2 ps, is chosen which provides the
finest resolution in simulation trajectories.

To simplify the result, we merge the four nodes with
extended structures as a single unfolded state U and collapse
the three blue nodes with folded structures as folded state F
leaving alone the two intermediates, I1 and I2. This does not
change the topology of MAPPER graph, but highlights the
dynamics associated with intermediate states. Configurations
in simulations are mapped to such four-node states by near-
est neighbor method. One-step �2 ps� transition probability is
then computed among the four states.

The result is shown in Fig. 4. It can be seen that the two
intermediates, I1 and I2, are kinetically well separated on
folding pathways. Once the simulation climbs up the energy
barrier I1 and I2, the majority will either proceed to F or
withdraw to U, while an ignorable minority will cross the
intermediates from I1 to I2. Moreover, we note that since our
SREMD simulations perform a random walk in the tempera-
ture space, we are not able to extract rates of the folding or
unfolding reactions at a certain temperature of interest.

C. Importance of conditional density filters

Conditional density filters play a crucial role here, with-
out which clustering methods such as K-means or single
linkage tend to split the sparse intermediates and lump them
with densest clusters.

To see this, we make a comparison between MAPPER

clusters found in Fig. 3�b� and K-means clustering on the
same data set. Since the number of K-means clusters is not
unknown a priori, we performed a series of experiments
with k varying from 1 to 80, each of which has 20 repeated
experiments. Our first purpose is to locate the value of k
around which the MAPPER cluster with end base pair formed
becomes identifiable. Hence for each K-means experiment,
we count the number of the end base-pair clusters, defined as
the clusters containing more than 75% configurations with
native contact 4 �Fig. 2�b�� formed and less than 25% for any
other native contact. Figure 5 plots a rough distribution of
the numbers of end base-pair clusters against the growth of k.
It can be seen that around k=25 this intermediate state be-
comes identifiable, in the sense that with more than 1/2 prob-
ability such clusters are found indicated by nonzero medians.
Notice that as k grows, the variation range �10%�90%� of
such cluster numbers expands, showing a trend of increasing
instability. Particularly around k=55, such a state begins to
split into several K-means clusters.

We can further see how K-means clusters might split the
intermediate states and lump them toward densest clusters.
Figure 6 illustrates this when k=30 for K-means clustering,
on the same data set for the construction of MAPPER clusters
on refolding pathways.

D. Comparative studies on single linkage versus
k-means

Single-linkage clustering is motivated by its ability to
identify possibly nonconvex clusters of unknown number. It
is also interesting to explore other clustering methods such as
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FIG. 4. �Color online� Transition probability from two intermediate states.
Lag time is 2 ps. The left four nodes as extended structures �Fig. 3�b�� are
merged into node U, and the right three nodes as folded structures are
collected in node F. The two intermediate states on pathways are denoted by
I1 and I2, respectively. The transition probability from I1 and I2 to other
states are noted as numbers on the arrows. One can see that I1 and I2 are
kinetically separated.
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FIG. 5. �Color online� The number of end base-pair clusters found by
K-means. Here k ranges from 2 to 80 with step 2. For each k, 20 experi-
ments are repeated with K-means clustering. The number of clusters with
end base pair formed are recorded. The star is the median of such numbers
and the bar delimits the distribution range from 10% to 90%. Starting from
around k=25, such clusters appear with at least 1/2 probability. Around k
=55, such clusters begin to split. The instability of K-means clusters is
increasing as k grows, indicated by the expanding ranges.
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K-means which tries to group data in spherical clusters and
is widely used in the studies of biomolecular folding simu-
lations. Given the cluster number returned by single linkage,
comparisons with K-means of similar number of clusters on
the same level sets might disclose how far the intermediate
states deviate from spherical shapes. For this purpose, we
perform K-means clustering on the same data set for refold-
ing pathways in Fig. 3�b�. We use the same number of clus-
ters returned by single linkage, and especially on level 5 we
set k=2. It turns out that K-means finds two clusters on level
5 with similar structural features to single linkage, i.e., one
with closing base pair formed and the other with the end base
pair. However K-means has different partition: 48% versus
52%, in contrast to 23% versus 44% in single linkage.
Clearly to form spherical clusters, K-means clusters mix
more configurations from different single-linkage clusters,
which can be shown by the percentage dropping of dominant
end base pair from 96% to 65% in the smaller cluster. How-
ever, the structural similarity in both methods suggests that
single-linkage clusters are not very far from spherical shapes.

E. On nonlinear dimensionality reduction

Although a biomolecular system is typically described
by a high-dimensional configuration space, it is expected that
those configurations often visited in a folding process may
concentrate around some low-dimensional manifolds which
might be described by a much smaller number of reaction
coordinates. Recently Das et al.8 shows that Isomap can be
applied to recover such reaction coordinates in simple fold-
ing processes with a single pathway. Isomap tries to preserve
both the local and global geodesic distances between con-
figurations defined as shortest path distance on a neighbor-
hood graph. However, Isomap might not work in complex
problems where multiple pathways exist. Isomap requires
that the data manifold are globally isometric to a convex
domain of low-dimensional space.2,5 The existence of more
than two pathways connecting two metastates may lead to
holes in sampled regions which fails the convex domain as-
sumption. Moreover, Isomap is too sensitive to the metric in
choice. In this paper we use a coarse metric as Hamming
distance for contact maps, where the geodesic distance be-
tween configurations does not reflect the distance in folding
process. Moreover, The high heterogeneity in distribution is
also a hurdle for Isomap technique to identify useful inter-
mediates.

The last two issues also challenge other techniques for
nonlinear dimensionality reduction, such as Locally Linear
Embedding,3 Laplacian eigenmap,4 Hessian eigenmap,5 dif-
fusion map,6 etc. These geometric embedding techniques
map the data in high-dimensional spaces to a low-
dimensional space by preserving some local metric relations
among neighbors of data points, e.g., see Ref. 7. They are
thus sensitive to the metric in choice and heterogeneous dis-
tribution might distort local metrics. In applications to com-
plex biomolecular systems, successful examples are only
found in simple settings such as with a single protein folding
pathway8 or quasisteady state in dynamics of signal trans-
duction networks.9

However, as a topological tool MAPPER with density fil-
ters is shown efficient in dealing with heterogeneous distri-
butions and less sensitive to the metric in choice. In this
paper even with such a coarse metric as Hamming distance,
it efficiently discloses structural information in pathways
which are difficult to other geometric embedding techniques.
Thus, one of our ongoing directions is to combine the topo-
logical tool MAPPER with those geometric embedding tech-
niques, such as applying nonlinear dimensionality reduction
separately on components or clusters discovered by MAPPER.

IV. CONCLUSIONS

In this paper we develop MAPPER, a topological data
analysis tool, in the analysis of simulation data for biomo-
lecular folding pathways. As an application, in the first time
we are able to obtain structural evidence from computer
simulations in support that RNA hairpin folding has two
dominant pathways with multiple intermediate states. We
have also incorporated the temporal information from simu-
lation trajectories to verify that the twofolding pathways are
kinetically separated. It is thus a promising direction to ex-
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FIG. 6. �Color online� K-means clustering fails to capture the low-density
intermediate states with one end base pair formed. The illustration here
chooses k=30 for K-means clustering. �a� shows how end base-pair formed
structures are distributed in different k-means clusters; �b� illustrates the
mean structures of the top eight K-means clusters �gray� which contain
base-pair formed structures. K-means splits the MAPPER cluster and lumps
them with densest clusters.
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plore with MAPPER such structural information in biomolecu-
lar folding problems.

We have shown that with proper designs of conditional
density filters and clustering schemes, MAPPER can address
the heterogeneity issue in distribution, deal with multiple
pathway data with nontrivial topology, and be less sensitive
to the metric in choice. These features can be used to en-
hance traditional nonlinear dimensionality reduction meth-
ods, such as Isomap, Laplacian eigenmap, diffusion maps,
etc. One of our ongoing direction is to explore the combina-
tions of the topological tool MAPPER with those geometric
tools for better characterizations of biomolecular systems.

As clustering method plays a fundamental role toward
building up many important models such as Markov state
models. MAPPER as a methodology adds a new perspective to
existing clustering tools. One of our future direction is to
build up more sophisticated dynamical models based on
MAPPER which incorporate intermediate states and can be
reduced to traditional Markov state models describing
merely basin-to-basin transitions.
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APPENDIX A: RNA HAIRPIN FOLDING
SIMULATIONS

Our simulations used the AMBER 94 potential. 2800
SREMD simulations with an aggregate simulation time of
54.6 �s were performed, see Ref. 14 for details. Even with
this amount of simulation, reversible folding was not
achieved and we have not reached equilibrium sampling.14

However, among 2800 SREMD simulations, we obtain 760
trajectories with a complete unfolding event and 550 trajec-
tories with a complete refolding event. Therefore, we have
sufficient data to define the dominant conformational states
in the folding and unfolding pathways. Note that an unfold-
ing event defined above only contains one unfolded state as
the end point, whose density is thus too low in samples.
Therefore, among such trajectories, we randomly choose 149
extended unfolding events and 23 extended refolding events,
which includes m=10 more points after the end point of each
event. In this way we obtain about 100 000 samples for ei-
ther class of events.

Note that contact maps are used as a discrete represen-
tation of structures, whence different configuration samples
might have the same contact map representation. Such rep-
etitions should be kept for density estimation, but can be

compressed into unique structures for clustering analysis. In
fact, those samples contain 49 332 and 56 118 unique con-
tact maps, for unfolding and refolding extended events, re-
spectively. They are sufficient for the analysis by MAPPER.

APPENDIX B: PARAMETER CHOICE IN MAPPER

Conditional density filter. The data generated from
SREMD simulations are normally dominated by the folded
and unfolded structures. For example, a typical refolding tra-
jectory starts from an unfolded state, undergoing a significant
period of stochastic fluctuation around that, then proceeds
gradually to the folded state. It is in the neighborhood of
folded states that interesting structural information about
folding pathways are exhibited. Therefore, in the construc-
tion of the conditional density filters, we treat folding and
unfolding separately. In the study of folding pathways, we
take configurations from refolding events, and then weight
heavily a neighborhood around the native states. However, in
the study of unfolding pathways, we sample from unfolding
events and focus on a neighborhood of the unfolded states.

To be specific, in the study of unfolding, we extract 4330
configurations around the extended states with no more six
nonadjacent contacts formed. On the other hand, in the study
of refolding, we extract 2952 configurations of no more that
seven-bit Hamming distance away from the native state to
avoid the highly populated extended states. This is equiva-
lent to the choice of a weight function w�x� which is a con-
stant in a neighborhood of the extended states �no more than
six nonadjacent contacts� or the native state �no more than
seven-bit Hamming distance� and zero otherwise.

Since the space of contact maps is discrete, we use Ham-
ming distance and choose �=�=1 in kernel density estima-
tion �2�, which is equivalent to the Gaussian kernel with the
standard Euclidean distance in R55.

We note that in a range of 1���8 MAPPER returns
qualitatively similar results. In fact, smoothing the density
filter without changing the order leads to the same result in
MAPPER. However, decreasing �, even to 0.9, causes the dis-
appearance of the smaller passway. A small choice of � cre-
ates a rugged density filter, which alters the results of MAP-

PER. Our experiments show that �=1 is close to this
bifurcation point.

Level sets. We divide the range of the density filters into
n overlapped intervals, where each interval contains the same
number of samples. In other words, we order the samples
according to the filter value, then divide the sample into
overlapped bins of equal size. It is also possible to consider
division by equal filter value intervals,11 but the former has at
least two advantages. First the former method only takes into
account the order information about the filters to stratify the
data, whence any monotone transformation on h�x�, such as
−log h�x�, leads to the same result. This makes the result
from MAPPER relatively more robust to the error in density
estimation. Second it is more convenient to control the com-
putational cost where each level has similar running time due
to the same sample size, which is suitable for parallel com-
putations.

We have tested the choice of n among 4, 6, 8, 10, 12, 14,
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so that each level contains around several hundred configu-
rations. Overlap percentage can be chosen from 15% to 75%.
All of them give qualitatively similar results although
smaller number of levels and larger overlap cause longer
computation. The results presented in this paper are gener-
ated under the choice of eight intervals with 25% overlap.

1. Single-linkage clustering

To determine an appropriate threshold in single linkage,
we build up a histogram based on the edge weights in the
MST using k=5 bins. We only focus on those bins containing
the largest p=20% edges. The threshold value is chosen to
be the center of the first empty bin among them, defined as
less than q=2% samples in the largest bin. The reason we do
so is that the empty bin with short edges often appear due to
undersampling which does not tell us information about gaps
among components. If there is no such short bin, take the
entire level set as one cluster. The results of MAPPER will be
sensitive to the choice of such k. Generally speaking, in-
creasing k will increase the number of clusters and vice
versa. Considering the fact that the diameter of the data is
about 14, we normally choose k an integer between 5 and 10,
which all gave qualitatively the same results as k=5. We note
that although the threshold found by histogram method is
sensitive to the bin number k, the threshold leading to the
two clusters on level five in Fig. 3�b� is always two-bit Ham-
ming distance, which is very robust in different choices of k.
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