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This paper describes information-based approaches to pro-
cessing and organizing spatially distributed, multimodal sensor
data in a sensor network. Energy-constrained networked sensing
systems must rely on collaborative signal and information
processing (CSIP) to dynamically allocate resources, maintain
multiple sensing foci, and attend to new stimuli of interest, all
based on task requirements and resource constraints. Target
tracking is an essential capability for sensor networks and is used
as a canonical problem for studying information organization
problems in CSIP. After formulating a CSIP tracking problem
in a distributed constrained optimization framework, the paper
describes information-driven sensor query and other techniques
for tracking individual targets as well as combinatorial tracking
problems such as counting targets. Results from simulations
and experimental implementations have demonstrated that these
information-based approaches are scalable and make efficient use
of scarce sensing and communication resources.
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I. SENSORNETWORK APPLICATIONS, CONSTRAINTS, AND

CHALLENGES

Networked sensing offers unique advantages over tradi-
tional centralized approaches. Dense networks of distributed
networked sensors can improve perceived signal-to-noise
ratio (SNR) by decreasing average distances from sensor
to target. Increased energy efficiency in communications
is enabled by the multihop topology of the network [22].
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Moreover, additional relevant information from other sen-
sors can be aggregated during this multihop transmission
through in-network processing [13]. But perhaps the greatest
advantages of networked sensing are in improved robustness
and scalability. A decentralized sensing system is inherently
more robust against individual sensor node or link failures,
because of redundancy in the network. Decentralized algo-
rithms are also far more scalable in practical deployment,
and may be the only way to achieve the large scales needed
for some applications.

A sensor network is designed to perform a set of high-level
information processing tasks such as detection, tracking, or
classification. Measures of performance for these tasks are
well defined, including detection, false alarms or misses,
classification errors, and track quality. Commercial and mil-
itary applications include environmental monitoring (e.g.,
traffic, habitat, security), industrial sensing and diagnostics
(e.g., factory, appliances), infrastructure protection (e.g.,
power grid, water distributions), and battlefield awareness
(e.g., multitarget tracking).

Unlike a centralized system, however, a sensor network
is subject to a unique set of resource constraints such as
limited on-board battery power and limited network com-
munication bandwidth. In a typical sensor network, each
sensor node operates untethered and has a microprocessor
and limited amount of memory for signal processing and
task scheduling. Each node also is equipped with one or
more of acoustic microphone arrays, video or still cameras,
infrared (IR), seismic, or magnetic sensing devices. Each
sensor node communicates wirelessly with a small number
of local nodes within the radio communication range.

The current generation of wireless sensor hardware ranges
from shoe-box sized Sensoria WINS NG sensors [20] with
an SH-4 microprocessor to matchbox-sized Berkeley motes
with an 8-b microcontroller [12]. It is well known that
communicating 1 b over the wireless medium consumes
far more energy than processing the bit. For the Sensoria
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sensors and Berkeley motes, the ratio of energy consump-
tion for communication and computation is in the range of
1000–10 000. Despite the advances in silicon fabrication
technologies, wireless communication will continue to
dominate the energy consumption of embedded networked
systems for the foreseeable future [8]. Thus, minimizing the
amount and range of communication as much as possible,
for example, through local collaboration, data compression,
or invoking only the nodes that are relevant to a given task,
can significantly prolong the lifetime of a sensor network
and leave nodes free to support multiuser operations.

Traditional signal processing approaches have focused
on optimizing estimation quality for a fixed set of available
resources. However, for power-limited and multiuser de-
centralized systems, it becomes critical to carefully select
the embedded sensor nodes that participate in the sensor
collaboration, balancing the information contribution of
each against its resource consumption or potential utility
for other users. This approach is especially important in
dense networks, where many measurements may be highly
redundant, and communication throughput severely limited.
We use the term “collaborative signal and information
processing” (CSIP) to refer to signal and information
processing problems dominated by this issue of selecting
embedded sensors to participate in estimation.

This paper uses tracking as a representative problem to ex-
pose the key issues for CSIP—how to dynamically determine
what needs to be sensed, who should sense, how often the in-
formation must be communicated, and to whom. The rest of
the paper is organized as follows. Section II will introduce
the tracking problem and present a set of design consider-
ations for CSIP applications. Sections III and IV will ana-
lyze a range of tracking problems that differ in the nature of
the information being extracted, and describe and compare
several recent contributions that adopted information based
approaches. Section V will discuss future directions for CSIP
research.

II. TRACKING AS A CANONICAL PROBLEM FORCSIP

Tracking is an essential capability in many sensor network
applications, and is an excellent vehicle to study information
organization problems in CSIP. It is especially useful for il-
lustrating a central problem of CSIP: dynamically defining
and forming sensor groups based on task requirements and
resource availability.

From a sensing and information processing point of view,
we define a sensor network as a tuple, .

and specify a network graph, with its nodes, and link
connectivity . is a set of functions which
characterize the properties of each node in, including
its location, computational capabilities, sensing modality,
sensor output type, energy reserve, and so on. Possible
sensing modalities includes acoustic, seismic, magnetic, IR,
temperature, or light. Possible output types include infor-
mation about signal amplitude, source direction-of-arrival
(DOA), target range, or target classification label. Similarly,

Fig. 1. A tracking scenario, showing two moving targets,X and
Y , in a field of sensors. Large circles represent the range of radio
communication from each node.

specifies properties for each link such as link capacity
and quality.

A tracking task can be formulated as a constrained
optimization problem .
is the sensor network specified previously. is a set of
targets, specifying for each target the location, shape (if
not a point source), and signal source type. is a signal
model for how the target signals propagate and attenuate
in the physical medium. For example, a possible power
attenuation model for an acoustic signal is the inverse dis-
tance squared model. is a set of user queries, specifying
query instances and query entry points into the network. A
sample query is “Count the number of targets in region.”

is an objective function, defined by task requirements.
For example, for a target localization task, the objective
function could be the localization accuracy, expressed as
the trace of the covariance matrix for the position estimate.

specifies a set of constraints. An
example is localizing an object within a certain amount of
time and using no more than a certain quantity of energy.
The constrained optimization finds a set of feasible sensing
and communication solutions for the problem that satisfy
the given set of constraints. For example, a solution to the
localization problem described previously could be a set of
sensor nodes on a path that gathers and combines data and
routes the result back to the querying node.

In wireless sensor networks, some of the information
defining the objective function and/or constraints is only
available at run time. Furthermore, the optimization problem
may have to be solved in a decentralized way. In addition,
anytime algorithms are desirable because constraints and
resource availability may change dynamically.

A. Tracking Scenario

We use the following tracking scenario (see Fig. 1) to bring
out key CSIP issues. As a targetmoves from left to right,
a number of activities occur in the network.

1) Discovery: Node detects and initiates tracking.
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Fig. 2. Storage and communication of target state information in a networked distributed tracker.
Circles on the grid represent sensor nodes, and some of the nodes, denoted by solid circles, store
target state information. Thin, faded arrows or lines denote communication paths among the neighbor
nodes. Thin, dark arrows denote sensor handoffs. A target moves through the sensor field, indicated
by thick arrows. (a) A fixed single leader node has the target state. (b) A succession of leader nodes
are selected according to information such as vehicle movement. (c) Every node in the network
stores and updates target state information.

2) Query processing: A user queryenters the network
and is routed toward regions of interest, in this case,
the region around node. It should be noted that
other types of queries, such as long-running queries
that dwell in a network over a period of time are also
possible.

3) Collaborative Processing: Nodeestimates the target
location, possibly with help from neighboring nodes.

4) Communication: Node may hand off data to node,
to , etc.

5) Reporting: Node or summarizes track data and
sends it back to the querying node.

Let us now assume that another target,, enters the re-
gion around the same time. The network will have to handle
multiple tasks in order to track both targets simultaneously.
When the two targets move close to each other, the problem
of properly associating a measurement to a target track, the
so-calleddata association problem, becomes tricky. In addi-
tion, collaborative sensor groups, as defined earlier, must be
selected carefully since multiple groups might need to share
the same physical hardware [18].

This tracking scenario raises a number of fundamental
information processing problems in distributed information
discovery, representation, communication, storage, and
querying: 1) in collaborative processing, the issues of
target detection, localization, tracking, and sensor tasking
and control; 2) in networking, the issues of data naming,
aggregation, and routing; 3) in databases, the issues of data
abstraction and query optimization; 4) in human-computer
interface, the issues of data browsing, search, and visual-
ization; and 5) in software services, the issues of network
initialization and discovery, time and location services, fault
management, and security. In the rest of the paper, we will
focus on the collaborative processing aspects and touch on
other issues only as necessary.

A common task for a sensor network is to gather in-
formation from the environment. Doing this under the

resource constraints of a sensor network may require
data-centric routing and aggregation techniques which differ
considerably from TCP/IP end-to-end communication.
Consequently, the research community has been searching
for the right “sensor net stack” that can provide suitable
abstractions over networking and hardware resources. While
defining a unifying architecture for sensor networks is still
an open problem, we believe a key element of such an archi-
tecture is theprincipled interaction between the application
and networking layers. For example, Section III will de-
scribe an approach that expresses application requirements
as a set of information and cost constraints so that an ad hoc
networking layer using, for example, the diffusion routing
protocol [13], can effectively support the application.

B. Design Desiderata in Distributed Tracking

In essence, a tracking system attempts to recover the state
of a target (or targets) from observations. Informally, we refer
to the information about the target state distilled from mea-
surement data as a belief or belief state. An example is the
posterior probability distribution of target state, as discussed
in Section III. As more observation data are available, the be-
lief may be refined and updated.

In sensor networks, the belief state can be stored centrally
at a fixed node, at a sequence of nodes through successive
hand-offs, or at a set of nodes concurrently. In the first
case [see Fig. 2(a)], a fixed node is designated to receive
measurements from other relevant sensors through com-
munication. This simpler tracker design is obtained at the
cost of potentially excessive communication and reduced
robustness to node failure. It is feasible only for tracking
nearly stationary targets, and is in general neither efficient
nor scalable.

In the second case [see Fig. 2(b)], the belief is stored
at a node called the leader node, which collects data from
nearby, relevant sensors. As the phenomenon of interest
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moves or environmental conditions vary, the leadership may
change hands among sensor nodes. Since the changes in
physical conditions are often continuous in nature, these
handoffs often occur within a local geographic neighbor-
hood. This moving leader design localizes communication,
reducing overall communication and increasing the lifetime
of the network. Robustness of this method may suffer from
potential leader node attrition, but this can be mitigated
by maintaining copies of the belief in nearby nodes and
detecting and responding to leader failure. The key research
challenge for this design is to define an effective selection
criterion for sensor leaders, to be addressed in Section III.

Finally, the belief state can be completely distributed
across multiple sensor nodes [see Fig. 2(c)]. The inference
from observation data is accomplished nodewise, thus
localizing the communication. This is attractive from the
robustness point of view. The major design challenge is
to efficiently infer global properties about targets, some
of which may be discrete and abstract, from partial, local
information, and to maintain information consistency across
multiple nodes. Section IV addresses the challenge. Many
issues about leaderless distributed trackers are still open and
deserve much attention from the research community.

III. IDSQ: A CSIP APPROACH TOTARGET TRACKING

Distributed tracking is a very active field, and it is beyond
the scope of this paper to provide a comprehensive survey.
Instead, we will focus on the information processing aspect
of the tracking problems, answering questions such as what
information is collected by the sensors, how that informa-
tion is aggregated in the network, and what high-level user
queries are answered. This section describes information-
driven sensor query (IDSQ), a set of information-based ap-
proaches to tracking individual targets, and discusses major
issues in designing CSIP solutions. Next, Section IV presents
approaches to other tracking problems, where the focus is
more on uncovering abstract and discrete target properties,
such as target density, rather than just their locations.

A. Tracking Individual Targets

The basic task of tracking a moving target in a sensor
field is to determine and report the underlying target
state , such as its position and velocity, based
on the sensor measurements up to time, denoted as

. Many approaches have been
developed over the last half century, including Kalman
filters, which assume a Gaussian observation model and
linear state dynamics, and, more generally, sequential
Bayesian filtering, which computes the posterior belief at
time based on the new measurement and the
belief inherited from time

Here, denotes the observation model, and
the state dynamics model. As more data is

gathered over time, the belief is successively
refined.

Kalman filters and many practical forms of Bayesian
filters assume that the measurement noise across multiple
sensors is independent, which is not always the case. Algo-
rithms such as covariance intersection have been proposed
to combine data from sensors with correlated information.
While these methods have been successfully implemented in
applications, relatively little consideration was given to the
fundamental problems of moving data across sensor nodes
in order to combine data and update track information.
There was no cost model for communication in the tracker.
Furthermore, due to communication delays, sensor data
may arrive at a tracking node out of order compared to the
original time sequence of the measurements. Kalman or
Bayesian filters assume a strict temporal order on the data
during the sequential update, and may have to roll back
the tracker in order to incorporate “past” measurements or
throw away the data entirely.

For multitarget tracking, methods such as multiple hypoth-
esis tracking (MHT) [23] and joint probabilistic data associa-
tion (JPDA) [2] have been proposed. They addressed the key
problem of data association, of pairing sensor data with tar-
gets, thus creating association hypotheses. MHT forms and
maintains multiple association hypotheses. For each hypoth-
esis, it computes the probability that it is correct. On the other
hand, JPDA evaluates the association probabilities and com-
bines them to compute the state estimate. Straightforward
applications of MHT and JPDA suffer from a combinatorial
explosion in data association. Knowledge about targets, en-
vironment, and sensors can be exploited to rank and prune
hypotheses [7], [21].

B. Information-Based Approaches

The main idea of information-based approaches is to base
sensor collaboration decisions on information content as
well as constraints on resource consumption, latency, and
other costs. Using information utility measures, sensors in a
network can exploit the information content of data already
received to optimize the utility of future sensing actions,
thereby efficiently managing scarce communication and
processing resources. The distributed information filter [19]
is a method of distributed fusion in which nodes communi-
cate any new information contained in each measurement to
other nodes for fusion. Unlike IDSQ, it is not localized to re-
gions of high-information content, and thus may suffer from
higher communication requirements and scalability prob-
lems. Directed diffusion routes sensor data in a network to
minimize communication distance between data sources and
data sinks [9], [13]. This is an interesting way of organizing
a network to allow publish-and-subscribe to occur at a very
fine-grained level. A prediction-based tracking algorithm is
described in [3] which uses estimates of target velocity to
select which sensors to query. IDSQ [5], [26] formulates the
tracking problem as a more general distributed constrained
optimization that maximizes information gain of sensors
while minimizing communication and resource usage. We
describe the main elements of IDSQ here.
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Fig. 3. Sensor selection based on information gain of individual
sensor contributions. The information gain is measured by the
reduction in the error ellipsoid. In the figure, reduction along the
longest axis of the error ellipsoid produces a larger improvement
in reducing uncertainty. Sensor placement geometry and sensing
modality can be used to compare the possible information gain
from each possible sensor selection, S1 or S2.

Given the current belief state, we wish to incrementally
update the belief by incorporating the measurements of other
nearby sensors. However, not all available sensors in the net-
work provide useful information that improves the estimate.
Furthermore, some information may be redundant. The task
is to select an optimal subset and an optimal order of in-
corporating these measurements into our belief update. Note
that in order to avoid prohibitive communication costs, this
selection must be done without explicit knowledge of mea-
surements residing at other sensors. The decision must be
made solely based upon known characteristics of other sen-
sors, such as their position and sensing modality, and predic-
tions of their contributions, given the current belief.

Fig. 3 illustrates the basic idea of optimal sensor selection.
The illustration is based upon the assumption that estimation
uncertainty can be effectively approximated by a Gaussian
distribution, illustrated by uncertainty ellipsoids in the state
space. In the figure, the solid ellipsoid indicates the belief
state at time, and the dashed ellipsoids are the incrementally
updated belief after incorporating an additional measurement
from a sensor, S1 or S2, at the next time step. Although in
both cases, S1 and S2, the area of high uncertainty is reduced
by 50%, the residual uncertainty of the S2 case is not reduced
along the long principal axis of the ellipse. If we were to
decide between the two sensors, we might favor case S1 over
case S2, based upon the underlying measurement task.

In distributed sensor network systems, we must balance
the information contribution of individual sensors against
the cost of communicating with them. For example, con-
sider the task of selecting among sensors with measure-
ments . Given the current belief , where

is the subset of sensors whose measure-
ment has already been incorporated, the task is to choose
which sensor to query among the remaining unincorporated
set . For this task, an objective function
as a mixture of information and cost is designed in [5]

(1)
Here, measures the information utility of incorporating the
measurement from sensor , is the cost of communi-
cation and other resources, andis the relative weighting of

Fig. 4. Sensor querying and data routing by optimizing an
objective function of information gain and communication cost,
whose iso-contours are shown as the set of concentric ellipses.
The circled dots are the sensors being queried for data along the
querying path. “T” represents the target position, and “?” denotes
the position of the query origin.

the utility and cost. With this objective function, the sensor
selection criterion takes the form

(2)

This strategy selects the best sensor given the current state
. A less greedy algorithm has been proposed in

[17], extending the sensor selection over a finite look-ahead
horizon.

Metrics of information utility and cost may take var-
ious forms, depending on the application and assumptions
[26]. For example, [5] considers the query routing problem:
assuming a query has entered from a fixed node, denoted
by “?” in Fig. 4, the task is to route the query to the target
vicinity, collect information along an optimal path, and re-
port back to the querying node. Assuming the belief state is
well-approximated by a Gaussian distribution, the usefulness
of the sensor data (in this case, range data)is measured by
how close the sensor is to the mean of the belief state under
a Mahalanobis metric, assuming that close-by sensors pro-
vide more discriminating information. The costis given
here by the squared Euclidean distance from the sensor to the
current leader, a simplified model of the energy expense of
radio transmission for some environments. The optimal path
results from the tradeoff between these two terms. Fig. 4 plots
such a sample path. Note that the belief is updated incremen-
tally along the information collection path. The ellipses in
Fig. 4 show a snapshot of the objective function that an ac-
tive leader node locally evaluates at a given time step.

For multimodal non-Gaussian distributions, a mutual in-
formation-based sensor selection criterion has been devel-
oped and successfully tested on real data [16]. The problem
is as follows: assuming that a leader node holds the current
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Fig. 5. Experimental results (right figure) show how the tracking error (vertical axis), defined as the
mean error of estimated target positions, varies with the sensor density (horizontal axis), defined as
the number of sensors in the sensor field. The left figure shows snapshots of a belief “cloud”—the
probability density function of the location estimate—for different local sensor densities.

belief , and the cost to query any sensor in its
neighborhood is identical (e.g. over a wired network or
using a fixed power level radio), the leader selects from
the most informative sensor to track the moving target. In this
scenario, the selection criterion (2) takes the form

(3)

where measures the mutual information in bits be-
tween two random variables. Essentially, this criterion se-
lects a sensor whose measurement , combined with the

current measurement history , would provide the greatest
amount of information about the target location . The
mutual information can be interpreted as Kullback–Leibler
divergence between the belief after and before applying the
new measurement . Therefore, this criterion favors the
sensor which on average gives the greatest change to the cur-
rent belief.

To analyze the performance of the IDSQ tracker, we
measure how the tracking error varies with sensor density
through simulation. Fig. 5 shows that as the sensor density
increases, tracking error, expressed as the mean error of
the location estimate, decreases, as one would expect, and
tends to a floor dominated by sensor noise. This indicates
that there is a maximum density beyond which using more
sensors gains very little in tracking accuracy.

The IDSQ tracker has been successfully tested in a
DARPA tracking experiment at 29 Palms, November 2001.
In the experiment, 21 Sensoria WINS NG wireless sensors
were used to collect acoustic data from moving vehicles.
Details of the results can be found in [16].

IV. COMBINATORIAL TRACKING PROBLEMS

The discussion of tracking so far has focused on local-
izing targets over time. In many applications, however, the
phenomenon of interest may not be the exact locations of in-
dividual objects, but global properties regarding a collection

of objects, for example, the number of targets, their regions
of influence, or their boundaries. The information to be ex-
tracted in this case may be more discrete and abstract, and
may be used to answer high-level queries about the world
state or to make strategic decisions about actions to take.

An expensive way to compute such global class properties
of objects is to locate and identify each object in the collec-
tion, determine its individual properties, and combine the in-
dividual information to form the global answer, such as the
total number of objects in the collection. However, in many
cases, these class properties can be inferred without accurate
localization or identification of all the objects in question.
For example, it may be possible to focus on attributes or re-
lations that can be directly sensed by the sensors. This may
both make the tracking results more robust to noise and may
simplify the algorithms to the point where they can be im-
plemented on less powerful sensor nodes. We call these ap-
proachescombinatorial tracking.

A. Counting the Number of Targets

Target counting is an attempt to keep track of the number
of distinct targets in a sensor field, even as they move, cross
over, merge, or split. It is representative of a class of appli-
cations that need to monitor intensity of activities in an area.
To describe the problem, let us consider counting multiple
targets in a two-dimensional (2-D) sensor field, as shown in
Fig. 6. We assume that targets are point source acoustic sig-
nals and can be stationary or moving at any time, indepen-
dent of the state of other targets. Sensors measure acoustic
power and are time synchronized to a global clock. We as-
sume that signals from two targets simply add at a receiving
sensor, which is reasonable for noncoherent interference be-
tween acoustic sources.

The task here is to determine the number of targets in the
region. One way to solve the problem is to compute an ini-
tial count and then update the count as targets move, enter, or
leave the region. Here, we describe a leader-based counting
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(a) (b)

Fig. 6. Target counting scenario, showing (a) three targets in a sensor field. The goal is to count
and report the number of distinct targets. With the signal field plotted in (b), the target counting
becomes a peak counting problem.

approach, where a sensor leader is elected for each distinct
target. A leader is initialized when a target moves into the
field. As the target moves, the leadership may switch be-
tween sensor nodes to reflect the state change. When a target
moves out of the region, the corresponding leader node is
deactivated. Note that here the leader election does not rely
on accurate target localization, as will be discussed later. The
target count is obtained by noting the number of active leader
nodes in the network (and the number of targets each is re-
sponsible for). Here, we will focus on the leader election
process, omitting details of signal and query processing.

Since the sensors in the network sense only signal energy,
we need to examine the spatial characteristics of target sig-
nals when multiple targets are in close proximity to each
other. In Fig. 6(b), the three-dimensional surface shown rep-
resents total target signal energy. Three targets are plotted,
with two targets near each other and one target well sepa-
rated from the rest of the group.

There are several interesting observations to make here.

1) Call the set of sensors who can “hear” a target the
target influence area. When targets’ influence areas are
well separated, target counting can be considered as a
clustering and a cluster leader election problem. Oth-
erwise, it becomes a peak counting problem.

2) The target signal propagation model has a large impact
on target “resolution.” The faster the signal attenuates
with distance from the source, the easier targets it is to
discern targets from neighboring targets based on the
energy of signals they emit.

3) Sensor spacing is also critical in obtaining correct
target count. Sensor density has to be sufficient to
capture the peaks and valleys of the underlying en-
ergy field, yet very densely packed sensors are often
redundant, wasting resources.

A decentralized algorithm was introduced for the target
counting task [10]. This algorithm forms equivalence classes
among sensors and elects a leader node for each class based
on the relative power detected at each sensor, and counts the
number of such leaders. The algorithm comprises a decision
predicate which, for each node, tests if it should partici-

Fig. 7. Target counting application implemented on Berkeley
motes. (a) 25 MICA motes with light sensors are placed on a
perturbed grid in a dark room. (b) Two light blobs emulating1=r
signal attenuation are projected onto the mote board. (c) The leader
of each collaboration group sends its location back to a base station
GUI.

pate in an equivalence class and a message exchange schema
about how the predicate is applied to nodes. A node de-

termines whether it belongs to an equivalence class based on
the result of applying the predicate to the data of the node as
well as information from other nearby nodes. Equivalence
classes are formed when the process converges. This pro-
tocol finds equivalence classes even when multiple targets
interfere.

This leader election protocol is very powerful yet light-
weight enough to be implemented on sensor nodes such as
the Berkeley motes. Fig. 7 shows an experiment consisting
of 25 MICA motes with light sensors. The entire application,
including code for collaborative leader election and multihop
communication to send the leader information back to the
base station, takes about 10-KB memory space on a mote.

B. Contour Tracking

Contour tracking is another example of finding the influ-
ence regions of targets without precisely locating them. For

ZHAO et al.: COLLABORATIVE SIGNAL AND INFORMATION PROCESSING: AN INFORMATION-DIRECTED APPROACH 1205



Fig. 8. Simulation result showing contours for three point targets in a sensor field. The contours are
constructed using a distributed marching squares-like algorithm, and are updated as targets move.

a given signal strength, the tracking results are a set of con-
tours, each of which contains one or more targets.

As in the target counting scenario, let us consider a 2-D
sensor field and point source targets. One way of determining
the contours is by building a mesh over distributed sensor
nodes via a Delaunay triangulation or a similar algorithm.
The triangulation can be computed offline when setting
up the network. Nodes that are connected by an edge of a
triangle are called direct neighbors. Given a measurement
threshold , which defines a contour, a node is called a
contour node if it has a sensor reading aboveand at least
one of its direct neighbors has a sensor reading below.
For a sufficiently smooth contour and dense sensor network,
a contour can be assumed to intersect an edge only once,
and an triangle at exactly two edges, as shown in Fig. 8.
By following this observation, we can traverse the contour
by “walking” along the contour nodes. Again, purely local
algorithms exist to maintain these contours as the targets
move.

C. Shadow-Edge Tracking

Contour tracking can be viewed as a way to determine the
boundary of a group of targets. In an extreme case, the group
of targets can be a continuum over space, where no single
sensor alone can determine the global information from
its local measurement. An example of this is to determine
and track the boundary of a large object moving in a sensor
field, where each sensor only “sees” a portion of the object.
One such application is tracking a moving chemical plume
over an extended area using airborne and ground chemical
sensors.

We assume the boundary of the object is a polygon made
of line segments. Our approach is to convert the problem of
estimating and tracking a nonlocal (possibly very long) line
segment into a local problem using a dual-space transforma-
tion [15]. Just as a Fourier transform maps a global prop-

erty of a signal, such as periodicity in the time domain, to a
local feature in the frequency domain, the dual-space trans-
form maps a line in the primal space into a point in the dual
space, and vice versa (see Fig. 9). Using a primal-dual trans-
formation, each edge of a polygonal object can be tracked as
a point in the dual space. A tracking algorithm has been de-
veloped based on the dual-space analysis and implemented
on the Berkeley motes [15]. A key feature of this algorithm is
that it allows us to put to sleep all sensor nodes except those
in the vicinity of the object boundary, yielding significant en-
ergy savings.

Tracking relations among a set of objects is another form
of global, discrete analysis of a collection of objects, as de-
scribed in [11]. An example determining whether a friendly
vehicle is surrounded by a number of enemy tanks. Just as in
the target counting problem, the “am I surrounded” relation
can be resolved without having to solve the local problems
of localizing all individual objects first.

V. DISCUSSION

We have used the tracking problem as a vehicle to discuss
sensor network CSIP design. We have focused on the estima-
tion and tracking aspects and skipped over other important
details, such as target detection and classification, for space
reasons.

Detection is an important capability for a sensor network,
as a tracker must rely on detection to initialize itself as new
events emerge [14], [25]. Traditional detection methods fo-
cused on minimizing false alarms or the miss rate. In a dis-
tributed sensor network, the more challenging problem for
detection is the proper allocation of sensing and communica-
tion resources to multiple competing detection tasks spawned
by emerging stimuli. This dynamic allocation and focusing
of resources in response to external events is somewhat anal-
ogous to attentional mechanisms in human vision systems,
and clearly a future research direction. More research should
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Fig. 9. Primal-dual transformation, a one–one mapping where a point maps to a line and a line
maps to point (upper figure). The image of a half-place shadow edge in the dual space is a point
located in a cell formed by the duals of the sensor nodes (lower figure).

also be directed to the information architecture of distributed
detection and tracking, and address the problems of “infor-
mation double-counting” and data association in a distributed
network [18], [24].

Optimizing resources for a given task, as, for example,
in IDSQ, relies on accurate models of information gain and
cost. To apply the information-driven approach to tracking
problems involving other sensing modalities or to problems
other than tracking, we will need to generalize our models
for sensing and estimation quality as well as our models of
the tradeoff between resource use and quality. For example,
what is the expected information gain per unit energy con-
sumption in a network? One must make assumptions about
the network, stimuli, and tasks in order to build such models.
Another interesting problem for future research is to con-
sider routing and sensing simultaneously and optimize for
the overall gain of information.

We have not yet touched upon the programming issues
in sensor networks. The complexity of the applications, the
collaborative nature of the algorithms, and the plurality and
diversity of resource constraints demand novel ways to con-
struct, configure, test, and debug the system, especially the
software. This is more challenging than traditional collec-
tion-based computation in parallel processing research be-
cause sensor group management is typically dynamic and
driven by physical events. In addition, the existing develop-
ment and optimization techniques for embedded software are
largely at the assembly level and do not scale to collaborative
algorithms for large-scale distributed sensor networks. We
need high-level system organizational principles, program-
ming models, data structures, and processing primitives to
express and reason about system properties, physical data,
and their aggregation and abstraction, without losing rele-
vant physical and resource constraints.

A possible programming methodology for distributed em-
bedded sensing systems is shown in Fig. 10. Given a spec-
ification at a collaborative behavioral level, software tools
automatically generate the interactions of algorithm compo-

Fig. 10. A programming methodology for deeply embedded
systems.

nents, and map them onto the physical hardware of sensor
networks.

At the top level, the programming model should be
expressive enough to describe application level concerns:
physical phenomena to be sensed, user interaction, and
collaborative processing algorithms, without the need to
manage node-level interactions. The programming model
may be domain specific. For example, SAL [27] is a lan-
guage for expressing and reasoning about geometries of
physical data in distributed sensing and control applications;
various biologically inspired computational models [1], [6]
study how complex collaborative behaviors can be built
from simple components. The programming model should
be structural enough to allow synthesis algorithms to exploit
commonly occurring patterns and generate efficient code.
TinyGALS [4] is an example of synthesizable programming
models for event-driven embedded software.
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Automated software synthesis is a critical step in
achieving the scalability of sensor network programming.
Hardware-oriented concerns such as timing and location
may be introduced gradually by refinement and configu-
ration processes. The final outputs of software synthesis
are operational code for each node, typically in forms
of imperative languages, from which the more classical
operating system, networking, and compiler technologies
can be applied to produce executables. The libraries sup-
porting node-level specifications need to abstract away
hardware idiosyncrasy across different platforms, but still
expose enough low-level features for applications to take
advantage of.

VI. CONCLUSION

This paper has focused on the CSIP issues in designing and
analyzing sensor network applications. In particular, we have
used tracking as a canonical problem to expose important
constraints in designing, scaling, and deploying these sensor
networks, and described approaches to several tracking prob-
lems that are at progressively higher levels with respect to the
nature of information being extracted.

From the discussions, it is clear that for resource-limited
sensor networks, one must take a more holistic approach and
break the traditional barrier between the application and net-
working layers. The challenge is to define the constraints
from an application in a general way so that the networking
layers can exploit, and vice versa. An important contribution
of the approaches described in this paper is the formulation
of application requirements and network resources as a set
of generic constraints so that target tracking and data routing
can be jointly optimized.
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