Davis Rempe

drempe at stanford dot edu
personal page

Research interests

I'm generally interested in 3D computer vision and machine learning, particularly in understanding dynamic and physical objects, humans, and scenes.

Recent publications

Davis Rempe, Jonah Philion, Leonidas J. Guibas, Sanja Fidler, Or Litany, Generating Useful Accident-Prone Driving Scenarios via a Learned Traffic Prior, Conference on Computer Vision and Pattern Recognition (CVPR), 2022   
Davis Rempe, Tolga Birdal, Aaron Hertzmann, Jimei Yang, Srinath Sridhar, Leonidas J. Guibas, HuMoR: 3D Human Motion Model for Robust Pose Estimation, International Conference on Computer Vision (ICCV), 2021 (Oral)   
Ali Kashefi, Davis Rempe, Leonidas J. Guibas, A point-cloud deep learning framework for prediction of fluid flow fields on irregular geometries, Physics of Fluids 33:2, 2021   
Davis Rempe, Tolga Birdal, Yongheng Zhao, Zan Gojcic, Srinath Sridhar, Leonidas J. Guibas, CaSPR: Learning Canonical Spatiotemporal Point Cloud Representations, Advances in Neural Information Processing Systems (NeurIPS), 2020 (Spotlight).   
Davis Rempe, Leonidas J. Guibas, Aaron Hertzmann, Bryan Russell, Ruben Villegas, and Jimei Yang, Contact and Human Dynamics from Monocular Video, European Conference on Computer Vision (ECCV), 2020 (Spotlight).   
Davis Rempe, Srinath Sridhar, He Wang, and Leonidas J. Guibas, Predicting the Physical Dynamics of Unseen 3D Objects, IEEE Winter Conference on Applications of Computer Vision (WACV), 2020.   
Learning Generalizable Final-State Dynamics of 3D Rigid Objects, Davis Rempe, Srinath Sridhar, He Wang, and Leonidas J. Guibas, CVPR Workshop on 3D Scene Understanding for Vision, Graphics, and Robotics, 2019.   
Learning Generalizable Physical Dynamics of 3D Rigid Objects Davis Rempe, Srinath Sridhar, He Wang, Leonidas J. Guibas. arXiv preprint, arXiv:1901.00466, 2019.