
CaSPR: Learning Canonical Spatiotemporal
Point Cloud Representations

Davis Rempe1 Tolga Birdal1 Yongheng Zhao2 Zan Gojcic3

Srinath Sridhar4∗ Leonidas J. Guibas1

1Stanford University 2University of Padova 3ETH Zürich 4Brown University
geometry.stanford.edu/projects/caspr

Abstract

We propose CaSPR, a method to learn object-centric Canonical Spatiotemporal
Point Cloud Representations of dynamically moving or evolving objects. Our
goal is to enable information aggregation over time and the interrogation of object
state at any spatiotemporal neighborhood in the past, observed or not. Different
from previous work, CaSPR learns representations that support spacetime conti-
nuity, are robust to variable and irregularly spacetime-sampled point clouds, and
generalize to unseen object instances. Our approach divides the problem into
two subtasks. First, we explicitly encode time by mapping an input point cloud
sequence to a spatiotemporally-canonicalized object space. We then leverage
this canonicalization to learn a spatiotemporal latent representation using neural
ordinary differential equations and a generative model of dynamically evolving
shapes using continuous normalizing flows. We demonstrate the effectiveness of
our method on several applications including shape reconstruction, camera pose es-
timation, continuous spatiotemporal sequence reconstruction, and correspondence
estimation from irregularly or intermittently sampled observations.

1 Introduction
Flow in space (CNF)

Fl
o

w
 in

 t
im

e
(L

at
en

t
O

D
E)

Figure 1: CaSPR builds a point cloud repre-
sentation of (partially observed) objects con-
tinuously in both space (x-axis) and time (y-
axis), while canonicalizing for extrinsic object
properties like pose.

The visible geometric properties of objects around us
are constantly evolving over time due to object motion,
articulation, deformation, or observer movement. Ex-
amples include the rigid motion of cars on the road, the
deformation of clothes in the wind, and the articulation
of moving humans. The ability to capture and recon-
struct these spatiotemporally changing geometric object
properties is critical in applications like autonomous driv-
ing, robotics, and mixed reality. Recent work has made
progress on learning object shape representations from
static 3D observations [53, 57, 58, 68, 79] and dynamic
point clouds [10, 12, 44, 45, 49, 55, 87]. Yet, impor-
tant limitations remain in terms of the lack of temporal
continuity, robustness, and category-level generalization.

In this paper, we address the problem of learning object-centric representations that can aggregate and
encode spatiotemporal (ST) changes in object shape as seen from a 3D sensor. This is challenging
since dynamic point clouds captured by depth sensors or LIDAR are often incomplete and sparsely
sampled over space and time. Furthermore, even point clouds corresponding to adjacent frames
in a sequence will experience large sampling variation. Ideally, we would like spatiotemporal
representations to satisfy several desirable properties. First, representations should allow us to

*Work done while at Stanford

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

https://geometry.stanford.edu/projects/caspr

capture object shape continuously over space and time. They should encode changes in shape due to
varying camera pose or temporal dynamics, and support shape generation at arbitrary spatiotemporal
resolutions. Second, representations should be robust to irregular sampling patterns in space and
time, including support for full or partial point clouds. Finally, representations should support
within-category generalization to unseen object instances and to unseen temporal dynamics. While
many of these properties are individually considered in prior work [12, 32, 45, 49, 74], a unified and
rigorous treatment of all these factors in space and time is largely missing.

We address the limitations of previous work by learning a novel object-centric ST representation
which satisfies the above properties. To this end, we introduce CaSPR – a method to learn Canonical
Spatiotemporal Point Cloud Representations. In our approach, we split the task into two: (1) canoni-
calizing an input object point cloud sequence (partial or complete) into a shared 4D container space,
and (2) learning a continuous ST latent representation on top of this canonicalized space. For the
former, we build upon the Normalized Object Coordinate Space (NOCS) [69, 78] which canonicalizes
intra-class 3D shape variation by normalizing for extrinsic properties like position, orientation, and
scale. We extend NOCS to a 4D Temporal-NOCS (T-NOCS), which additionally normalizes the
duration of the input sequence to a unit interval. Given dynamic point cloud sequences, our ST
canonicalization yields spacetime-normalized point clouds. In Sec. 5, we show that this allows
learning representations that generalize to novel shapes and dynamics.

We learn ST representations of canonicalized point clouds using Neural Ordinary Differential
Equations (Neural ODEs) [10]. Different from previous work, we use a Latent ODE that operates in
a lower-dimensional learned latent space which increases efficiency while still capturing object shape
dynamics. Given an input sequence, the canonicalization network and Latent ODE together extract
features that constitute an ST representation. To continuously generate novel spatiotemporal point
clouds conditioned on an input sequence, we further leverage invertible Continuous Normalizing
Flows (CNFs) [7, 25] which transform Gaussian noise directly to the visible part of an object’s
shape at a desired timestep. Besides continuity, CNFs provide direct likelihood evaluation which
we use as a training loss. Together, as shown in Fig. 1, the Latent ODE and CNF constitute a
generative model that is continuous in spacetime and robust to sparse and varied inputs. Unlike
previous work [12, 45], our approach is continuous and explicitly avoids treating time as another
spatial dimension by respecting its unique aspects (e.g., unidirectionality).

We demonstrate that CaSPR is useful in numerous applications including (1) continuous spacetime
shape reconstruction from sparse, partial, or temporally non-uniform input point cloud sequences,
(2) spatiotemporal 6D pose estimation, and (3) information propagation via space-time correspon-
dences under rigid or non-rigid transformations. Our experiments show improvements to previous
work while also providing insights on the emergence of intra-class shape correspondence and the
learning of time unidirectionality [20]. In summary, our contributions are:

1. The CaSPR encoder network that consumes dynamic object point cloud sequences and canonical-
izes them to normalized spacetime (T-NOCS).

2. The CaSPR representation of canonicalized point clouds using a Latent ODE to explicitly encode
temporal dynamics, and an associated CNF for generating shapes continuously in spacetime.

3. A diverse set of applications of this technique, including partial or full shape reconstruction,
spatiotemporal sequence recovery, camera pose estimation, and correspondence estimation.

2 Related Work
Neural Representations of Point Sets Advances in 2D deep architectures leapt into the realm of
point clouds with PointNet [57]. The lack of locality in PointNet was later addressed by a diverse set
of works [17, 18, 42, 66, 70, 73, 80, 84, 91], including PointNet++ [58] – a permutation invariant
architecture capable of learning both local and global point features. We refer the reader to Guo et
al. [29] for a thorough review. Treating time as the fourth dimension, our method heavily leverages
propositions from these works. Continuous reconstruction of an object’s spatial geometry has been
explored by recent works in learning implicit shape representations [11, 31, 47, 53].

Spatiotemporal Networks for 3D Data Analogous to volumetric 3D convolutions on video
frames [39, 75, 90], a direct way to process spatiotemporal point cloud data is performing 4D
convolutions on a voxel representation. This poses three challenges: (1) storing 4D volumes densely
is inefficient and impractical, (2) direct correlation of spatial and temporal distances is undesirable,

2

and (3) the inability to account for timestamps can hinder the final performance. These challenges
have fostered further research along multiple fronts. For example, a large body of works [3, 28, 44, 81]
has addressed temporal changes between a pair of scans as per-point displacements or scene flow [76].
While representing dynamics as fields of change is tempting, such methods lack an explicit notion
of time. MeteorNet [45] was an early work to learn flow on raw point cloud sequences, however
it requires explicit local ST neighborhoods which is undesirable for accuracy and generalization.
Prant et al. [55] use temporal frames as a cue of coherence to stabilize the generation of points.
CloudLSTM [87] models temporal dependencies implicitly within sequence-to-sequence learning.
Making use of time in a more direct fashion, MinkowskiNet [12] proposed an efficient ST 4D CNN
to exploit the sparsity of point sets. This method can efficiently perform 4D sparse convolutions, but
can neither canonicalize time nor perform ST aggregation. OccupancyFlow [49] used occupancy
networks [47] and Neural ODEs [10] to have an explicit notion of time.

Our method can be viewed as learning the underlying kinematic spacetime surface of an object
motion: an idea from traditional computer vision literature for dynamic geometry registration [48].

Canonicalization Regressing 3D points in a common global reference frame dates back to 6D
camera relocalization and is known as scene coordinates [67]. In the context of learning the normal-
ized object coordinate space (NOCS), [78] is notable for explicitly mapping the input to canonical
object coordinates. Thanks to this normalization, NOCS enabled category-level pose estimation and
has been extended to articulated objects [41], category-level rigid 3D reconstruction [13, 26, 33] via
multiview aggregation [69], and non-rigid shape reconstruction either via deep implicit surfaces [86]
or by disentangling viewpoint and deformation [50]. Chen et al. [8] proposed a latent variational
NOCS to generate points in a canonical frame.

Normalizing Flows and Neural ODEs The idea of transforming noise into data dates back to
whitening transforms [23] and Gaussianization [9]. Tabak and Turner [72] officially defined nor-
malizing flows (NFs) as the composition of simple maps and used it for non-parametric density
estimation. NFs were immediately extended to deep networks and high dimensional data by Rippel
and Adams [61]. Rezende and Mohamed used NFs in the setting of variational inference [59] and
popularized them as a standalone tool for deep generative modeling e.g. [35, 71]. Thanks to their
invertibility and exact likelihood estimation, NFs are now prevalent and have been explored in the
context of graph neural networks [43], generative adversarial networks [27], bypassing topological
limitations [2, 15, 19], flows on Riemannian manifolds [24, 46, 65], equivariant flows [5, 37, 60],
and connections to optimal transport [21, 51, 77, 89]. The limit case where the sequence of transfor-
mations are indexed by real numbers yields continuous-time flows: the celebrated Neural ODEs [7],
their latent counterparts [62], and FFJORD [25], an invertible generative model with unbiased density
estimation. For a comprehensive review, we refer the reader to the concurrent surveys of [36, 52].

Our algorithm is highly connected to PointFlow [83] and C-Flow [56]. However, we tackle encoding
and generating spatiotemporal point sets in addition to canonicalization while both of these works
use CNFs in generative modeling of 3D point sets without canonicalizing.

3 Background

In this section, we lay out the notation and mathematical background required in Sec. 4.

Definition 1 (Flow & Trajectory) Let us define a d-dimensional flow to be a parametric family of
homeomorphisms φ : M× R 7→ M acting on a vector z ∈ M ⊂ Rd with φ0(z) = z (identity
map) and φt(z) = zt. A temporal subspace of flows is said to be a trajectory T (z) = {φt(z)}t if
T (z) ∩ T (y) = ∅ for all z 6= y, i.e., different trajectories never intersect [14, 19].

Definition 2 (ODE-Flow, Neural ODE & Latent ODE) For any given flow φ there exists a corre-
sponding ordinary differential equation (ODE) constructed by attaching an optionally time-dependent
vector f(z, t) ∈ Rd to every point z ∈M resulting in a vector field s.t. f(z) = φ′(z)|t=0. Starting
from the initial state z0, this ODE given by dz(t)

dt = f(z(t), t) can be integrated for time T modeling
the flow φt=T :

zT = φT (z0) = z0 +

∫ T

0

fθ(zt, t) dt, (1)

where zt , z(t) and the field f is parameterized by θ = {θi}i. By the Picard–Lindelöf theorem [14],
if f is continuously differentiable then the initial value problem in Eq (1) has a unique solution.

3

…

maxpool

Latent ODE

Spatiotemporal
Local Features

Continuous Normalizing Flow (CNF)

T-NOCS

…

Reconstruction
Loss

3D Reconstruction
via Aggregation

R
ig

id
N

o
n

-r
ig

id

 o
r

T-
N

O
C

S

…

Continuous Spatiotemporal Sampling

C
o

nt
in

u
o

u
s

N
o

rm
al

iz
in

g
Fl

o
w

6D Rigid Camera
Pose Estimation

Spatiotemporal Interpolation &
Deformable Scene Flow Estimation

T-NOCS
Loss

TPointNet++

3D Reconstruction

3
D

 B
as

e
G

au
ss

ia
n

Figure 2: Architecture and applications of CaSPR. Our model consumes rigid or deformable point cloud
sequences and maps them to a spatiotemporal canonical latent space whose coordinates are visualized by RGB
colors (purple box). Using a Latent ODE, it advects a latent subspace forward in time to model temporal
dynamics. A continuous normalizing flow [25] (shown in red) decodes the final latent code to 3D space by
mapping Gaussian noise to the partial or full shape at desired timesteps. CaSPR enables multiple applications
shown in green boxes. Training directions for the normalizing flow are indicated by dashed arrows.

Instead of handcrafting, Neural ODEs [10] seek a function f that suits a given objective by modeling
f as a neural network. We refer to a Neural ODE operating in a latent space as a Latent ODE.

Numerous forms of Neural ODEs model f(·) to be autonomous, i.e., time independent f(zt) ≡
f(zt, t) [10, 19, 62], whose output fully characterizes the trajectory. While a Neural ODE advects
single particles, generative modeling approximates the full target probability density which requires
expressive models capable of exact density evaluation and sampling that avoids mode collapse.

Definition 3 (Continuous Normalizing Flow (CNF)) Starting from a simple dB-dimensional base
distribution py with y0 ∈ RdB ∼ py(y), CNFs [7, 25] aim to approximate the complex target
distribution px(x) by bijectively mapping empirical samples of the target to the base using an
invertible function gβ : RdB 7→ RdB with parameters β = {βi}i. Then the probability density
function transforms with respect to the change of variables: log px(x) = log py(y)− log det∇gβ(y).
The warping function g can be replaced by an integral of continuous-time dynamics yielding a form
similar to Neural ODEs except that we now consider distributions [25]:

log px(x) = log py(y0)−
∫ T

0

Tr
(∂gβ(yt, t | z)

∂yt

)
dt, (2)

with the simplest choice that the base distribution y0 is in a d-dimensional ball, py ∼ N (0, I). Here
z ∈ Rd is an optional conditioning latent vector [83]. Note that this continuous system is non-
autonomous i.e., time varying and every non-autonomous system can be converted to an autonomous
one by raising the dimension to include time [16, 19].

4 Method

We consider as input a sequence of potentially partial, clutter-free 3D scans (readily captured by
depth sensors or LIDAR) of an object belonging to a known category. This observation is represented
as a point cloud X = {xi ∈ R3 = {xi, yi, zi} | i = 1, . . . ,M ′}. For a sequence of K potentially
non-uniformly sampled timesteps, we denote a spatiotemporal (ST) point cloud as P = {Pk}Kk=1,
where Pk = {pi ∈ R4 = {xi, yi, zi, sk} | i = 1, . . . ,Mk}, Mk is the number of points at frame
k ∈ [1,K] and at the time sk ∈ [s1, sK] ⊂ R with M =

∑K
k=1Mk. Our goal is to explain P by

learning a continuous representation of shape that is invariant to extrinsic properties while aggregating
intrinsic properties along the direction of time. CaSPR achieves this through:

1. A canonical spacetime container where extrinsic properties such as object pose are factored out,
2. A continuous latent representation which can be queried at arbitrary spacetime steps, and
3. A generative model capable of reconstructing partial observations conditioned on a latent code.

We first describe the method design for each of these components, depicted in Fig. 2, followed by
implementation and architectural details in Sec. 4.1.

Canonicalization: The first step is canonicalization of a 4D ST point cloud sequence with the goal
of associating observations at different time steps to a common canonical space. Unlike prior work

4

T-
N

O
C

S
G

T-
TN

O
C

S

…

…

PointNet

PointNet++

(𝑥, 𝑦, 𝑧, 𝑡)

(𝑥, 𝑦, 𝑧)

repeated global
feature

spatial local features

spatiotemporal local features

1024 64

512

Shared MLP
(1600 x 1600)

L1 loss

(𝑇x 𝑀 x 4)

…

Figure 3: Architecture of our ST point-set canonicalization network, TPointNet++. It uses two branches that
extract ST features using a 4D PointNet and per-view 3D local features via PointNet++. These features are
combined and passed to an MLP to regress the T-NOCS points. Training is supervised via GT coordinates.
which assumes already-canonical inputs [49, 83], this step allows CaSPR to operate on raw point
cloud sequences in world space and enables multiple applications (see Fig. 2). Other previous work
has considered canonicalization of extrinsic properties from RGB images [69, 78] or a 3D point
cloud [41], but our method operates on a 4D point cloud and explicitly accounts for time labels.
Our goal is to find an injective spacetime canonicalizer cα(·) : P 7→ P × Z parameterized by
α = {αi}i, that maps a point cloud sequence P to a canonical unit tesseract P = {Pk}Kk=1, where
Pk = {pi ∈ R4 = {xi, yi, zi, tk} ∈ [0, 1] | i = 1, . . . ,Mk} and zC ∈ Z ⊂ Rd is the corresponding
canonical latent representation (embedding) of the sequence. Note that in addition to position and
orientation, P is normalized to have time in unit duration. We refer to P as Temporal-NOCS
(T-NOCS) as it extends NOCS [69, 78]. T-NOCS points are visualized using the spatial coordinate
as the RGB color in Fig. 2 and 3. Given a 4D point cloud in the world frame, we can aggregate the
entire shape from K partial views by a simple union: P =

⋃K
i=1 cα(Pi) [69]. Moreover, due to its

injectivity, cα(·) preserves correspondences, a property useful in tasks like pose estimation or label
propagation. We outline the details and challenges involved in designing a canonicalizer in Sec. 4.1.

Continuous Spatiotemporal Representation: While a global ST latent embedding is beneficial for
canonicalization and aggregation of partial point clouds, we are interested in continuously modeling
the ST input, i.e., being able to compute a representation for unobserved timesteps at arbitrary
spacetime resolutions. To achieve this, we split the latent representation: zC = [zCST, z

C
dyn] where

zCST is the static ST descriptor and zCdyn is used to initialize an autonomous Latent ODE dzt

dt = fθ(zt)

as described in Dfn. 2: z0 = zCdyn ∈ Rd. We choose to advect the ODE in the latent space (rather
than physical space [49]) to (1) enable learning a space best-suited to modeling the dynamics of the
observed data, and (2) improve scalability due to the fixed feature size. Due to the time-independence
of fθ, z0 fully characterizes the latent trajectory. Advecting z0 forward in time by solving this ODE
until any canonical timestamp T ≤ 1 yields a continuous representation in time zT that can explain
changing object properties. We finally obtain a dynamic spatiotemporal representation in the product
space: z ∈ RD = [zCST, zT]. Due to canonicalization to the unit interval, T > 1 implies extrapolation.

Spatiotemporal Generative Model: Numerous methods exist for point set generation [1, 26, 91],
but most are not suited for sampling on the surface of a partial 4D ST point cloud. Therefore,
we adapt CNFs [25, 83] as defined in Sec. 3. To generate a novel ST shape, i.e., a sequence of
3D shapes X1 . . .XK , we simulate the Latent ODE for t = 0 . . . T and obtain representations for
each of the canonical shapes in the sequence: zt=0 · · · zt=T . We then sample the base distribution
yk ∈ RdB=3 ∼ py(y) , N (0, I) and evaluate the conditional CNF in Eq (2) by passing each
sample yk through the flow gβ(yk | zt) conditioned on zt. Note that the flow is time dependent, i.e.,
non-autonomous. To increase the temporal resolution of the output samples we pick the timesteps
with higher frequency, whereas to densify spatially, we simply generate more samples yk.

4.1 Network Architecture

We now detail our implementations of the canonicalizer cα, Latent ODE network fθ, and CNF gβ .

TPointNet++ cα(·): The design of our canonicalizer is influenced by (1) the desire to avoid ST
neighborhood queries, (2) to treat time as important as the spatial dimensions, and (3) injecting
how an object appears during motion in space into its local descriptors resulting in more expressive
features. While it is tempting to directly apply existing point cloud architectures such as PointNet [57]
or PointNet++ [58], we found experimentally that they were individually insufficient (c.f. Sec. 5).
To meet our goals, we instead introduce a hybrid TPointNet++ architecture as shown in Fig. 3 to
implement cα and canonicalize P to P . TPointNet++ contains a PointNet branch that consumes the

5

Figure 4: Canonicalization applications. Partial shape reconstruction (left section) shows pairs of GT (left) and
predicted shapes (right). Pose estimation (right section) shows GT (green, solid) and predicted (red, dashed)
camera pose based on regressed T-NOCS points. Points are colored by their T-NOCS location.

entire 4D point cloud to extract both a 1024-dimensional global feature and 64-dimensional per-point
ST features. This treats time explicitly and equally to each spatial dimension. We also use PointNet++
to extract a 512-dimensional local feature at each input point by applying it at each cross-section in
time with no timestamp. We feed all features into a shared multi-layer perceptron (MLP) to arrive at
1600-dimensional embeddings corresponding to each input point.

We use the pointwise embeddings in two ways: (1) they are passed through a shared linear layer
followed by a sigmoid function to estimate the T-NOCS coordinates P̂ which approximate the ground
truth P , and (2) we max-pool all per-point features into a single latent representation of T-NOCS
zC ∈ R1600 which is used by the Latent ODE and CNF as described below. The full canonicalizer
cα(·) can be trained independently for T-NOCS regression, or jointly with a downstream task.

Latent ODE fθ(·) and Reconstruction CNF gβ(·): The full CaSPR architecture is depicted
in Fig. 2. It builds upon the embedding from TPointNet++ by first splitting it into two parts
zC = [zCST, z0 , zCdyn]. The dynamics network of the Latent ODE fθ is an MLP with three hidden
layers of size 512. We use a Runge-Kutta 4(5) solver [38, 63] with adaptive step sizes which supports
backpropagation using the adjoint method [10]. The static feature, zCST ∈ R1536 is skip-connected
and concatenated with zT to yield z ∈ R1600 which conditions the reconstruction at t = T .

To sample the surface represented by z, we use a FFJORD conditional-CNF [25, 83] as explained
in Sec. 3 and 4 to map 3D Gaussian noise y0 ∈ RdB=3 ∼ N (0, I) onto the shape surface. The
dynamics of this flow gβ(yt, t | z) are learned with a modified MLP [25] which leverages a gating
mechanism at each layer to inject information about the current context including z and current time
t of the flow. This MLP contains three hidden layers of size 512, and we use the same solver as the
Latent ODE. Please refer to the supplement for additional architectural details.

Training and Inference: CaSPR is trained with two objectives that use the GT canonical point
cloud sequence P as supervision. We primarily seek to maximize the log-likelihood of canonical
spatial points on the surface of the object when mapped to the base Gaussian using the CNF. This
reconstruction loss is Lr = −

∑K
k=1

∑Mk

i=1 log px(xi | ztk) where xi is the spatial part of pi ∈ Pk
and the log-likelihood is computed using Eq (2). Secondly, we supervise the T-NOCS predictions
from TPointNet++ with an L1 loss Lc =

∑M
i=1 |p̂i − pi| with pi ∈ P and p̂i ∈ P̂ . We jointly train

TPointNet++, the Latent ODE, and CNF for α, θ and β respectively with the final loss L = Lr +Lc.
During inference, TPointNet++ processes a raw point cloud sequence of an unseen shape and motion
to obtain the ST embedding and canonicalized T-NOCS points. The Latent ODE, initialized by this
embedding, is solved forward in time to any number of canonical “query” timestamps. For each
timestamp, the Latent ODE produces the feature to condition the CNF which reconstructs the object
surface by the forward flow of Gaussian samples. The combined continuity of the Latent ODE and
CNF enables CaSPR to reconstruct the input sequence at any desired ST resolution.

5 Experimental Evaluations

We now evaluate the canonicalization, representation, and reconstruction capabilities of CaSPR,
demonstrate its utility in multiple downstream tasks, and justify design choices.

Dataset and Preprocessing: We introduce a new dataset containing simulated rigid motion of
objects in three ShapeNet [6] categories: cars, chairs, and airplanes. The motion is produced with
randomly generated camera trajectories (Fig. 4) and allows us to obtain the necessary inputs and
supervision for CaSPR: sequences of raw partial point clouds from depth maps with corresponding
canonical T-NOCS point clouds. Each sequence contains K = 10 frames with associated timestamps.

6

Table 2: Partial surface sequence reconstruction. Chamfer (CD)
and Earth Mover’s Distances (EMD) are multiplied by 103. On the
left (10 Observed), 10 frames are given as input and all are recon-
structed. On the right, 3 frames are used as input (3 Observed), but
methods also reconstruct intermediate unseen steps (7 Unobserved).

10 Observed 3 Observed 7 Unobserved
Method Category CD EMD CD EMD CD EMD
PointFlow Cars 0.454 12.838 0.455 12.743 0.525 13.911
CaSPR-Atlas 0.492 19.528 0.540 22.099 0.530 19.635
CaSPR 0.566 10.103 0.590 11.464 0.584 11.259
PointFlow Chairs 0.799 17.267 0.796 17.294 0.950 18.442
CaSPR-Atlas 0.706 48.665 0.723 48.912 0.749 47.322
CaSPR 0.715 13.009 0.681 13.310 0.683 13.564
PointFlow Airplanes 0.251 9.500 0.252 9.534 0.281 9.814
CaSPR-Atlas 0.237 18.827 0.255 18.525 0.269 17.933
CaSPR 0.231 6.026 0.215 6.144 0.216 6.175

Figure 5: Reconstruction results. CaSPR
accurately captures occlusion boundaries
for camera motion at observed and unob-
served timesteps, unlike linear feature in-
terpolation with PointFlow.

Raw point cloud sequences are labeled with uniform timestamps from s1 = 0.0 to sK = 5.0 while
canonicalized timestamps range from t1 = 0 to tK = 1. For training, 5 frames with 1024 points are
randomly subsampled from each sequence, giving non-uniform step sizes between observations. At
test time, we use a different spatiotemporal sampling for sequences of held-out object instances: all
10 frames, each with 2048 points. Separate CaSPR models are trained for each shape category.

Evaluation Procedure: To measure canonicalization errors, T-NOCS coordinates are split into the
spatial and temporal part with GT given by X̄ and t respectively. The spatial error at frame k is
1
Mk

∑Mk

i=1 ‖x̂i − xi‖2 and the temporal error is 1
Mk

∑Mk

i=1 |t̂i − ti| . For reconstruction, the Chamfer
Distance (CD) and Earth Mover’s Distance (EMD) are measured (and reported multiplied by 103).
Lower is better for all metrics; we report the median over all test frames because outlier shapes cause
less informative mean errors. Unless stated otherwise, qualitative point cloud results (e.g., Fig. 4) are
colored by their canonical coordinate values (so corresponding points should have the same color).

Table 1: Canonicalization performance.

Method Category Spatial Err Time Err
MeteorNet Cars 0.0633 0.0001

PointNet++ No Time 0.0530 —
PointNet++ w/ Time 0.0510 0.0005

PointNet 0.0250 0.0012
TPointNet++ No Time 0.0122 —

TPointNet++ Cars 0.0118 0.0011
TPointNet++ Chairs 0.0102 0.0008
TPointNet++ Airplanes 0.0064 0.0009

5.1 Evaluations and Applications

Canonicalization: We first evaluate the accuracy
of canonicalizing raw partial point cloud sequences
to T-NOCS using TPointNet++. Tab. 1 shows me-
dian errors over all frames in the test set. The bot-
tom part evaluates TPointNet++ on each shape cat-
egory while the top compares with baselines on cars
(please see supplementary for more details). No-
tably, for spatial prediction, TPointNet++ outperforms variations of both PointNet [57] and Point-
Net++ [58], along with their spatiotemporal extension MeteorNet [45]. This indicates that our ST
design yields more distinctive features both spatially and temporally. MeteorNet and PointNet++
(with time) achieve impressive time errors thanks to skip connections that pass the input timestamps
directly towards the end of the network. Qualitative results of canonicalization are in Fig. 4.

Representation and Reconstruction: We evaluate CaSPR’s ability to represent and reconstruct
observed and unobserved frames of raw partial point cloud sequences. The full model is trained
on each category separately using both Lr and Lc, and is compared to two baselines. The first is a
variation of CaSPR where the CNF is replaced with an AtlasNet [26] decoder using 64 patches – an
alternative approach to achieve spatial continuity. This model is trained with Lc and a CD loss (rather
than Lr). The second baseline is the deterministic PointFlow [83] autoencoder trained to reconstruct
a single canonical partial point cloud. This model operates on a single timestep and receives the
already canonical point cloud as input: an easier problem. We achieve temporal continuity with
PointFlow by first encoding a pair of adjacent observed point clouds to derive two shape features,
and then linearly interpolating to the desired timestamp – one alternative to attain temporal continuity.
The interpolated feature conditions PointFlow’s CNF to sample the partial surface, similar to CaSPR.

Tab. 2 reports median CD and EMD at reconstructed test steps for each method. We evaluate two
cases: (1) models receive and reconstruct all 10 observed frames (left), and (2) models get the first,
middle, and last steps of a sequence and reconstruct both these 3 observed and 7 unobserved frames
(right). CaSPR outperforms PointFlow in most cases, even at observed timesteps, despite operating
on raw point clouds in the world frame instead of canonical. Because PointFlow reconstructs each

7

Figure 7: Continuous interpolation results. From three sparse frames of input with GT canonical
points shown on top, CaSPR reconstructs the sequence more densely in space and time (middle).
Contours of the Gaussian flowed to the car surface are shown on bottom (red is highest probability).

frame independently, it lacks temporal context resulting in degraded occlusion boundaries (Fig. 5)
and thus higher EMD. CaSPR gives consistent errors across observed and unobserved frames due
to the learned motion prior of the Latent ODE, in contrast to linear feature interpolation that sees a
marked performance drop for unobserved frames. The AtlasNet decoder achieves small CD since
this is the primary training loss, but has difficulty reconstructing the correct point distribution on the
partial surface due to the patch-based approach, resulting in much higher EMD for all cases.

Table 3: Pose estimation using T-NOCS.

Method Category Trans Err Rot Err(◦) Point Err
RPM-Net Cars 0.0049 1.1135 0.0066
CaSPR 0.0077 1.3639 0.0096

RPM-Net Chairs 0.0026 0.4601 0.0036
CaSPR 0.0075 1.5035 0.0091

RPM-Net Airplanes 0.0040 0.5931 0.0048
CaSPR 0.0051 0.9456 0.0057

Multiview Reconstruction: A direct application of TPoint-
Net++ is partial shape reconstruction of observed geometry
through a union of predicted T-NOCS spatial points. Due
to the quantitative accuracy of TPointNet++ at each frame
(Tab. 1), aggregated results closely match GT for unseen
instances in all categories as shown in Fig. 4 (left).

Rigid Pose Estimation: The world–canonical 3D point
correspondences from TPointNet++ allow fitting rigid object (or camera) pose at observed
frames using RANSAC [22]. Tab. 3 reports median test errors showing TPointNet++ is com-
petitive with RPM-Net [85], a recent specialized architecture for robust iterative rigid registra-
tion. Note here, RPM-Net takes both the raw depth and GT T-NOCS points as input. Trans-
lation and rotation errors are the distance and degree angle difference from the GT transfor-
mation. Point error measures the per frame median distance between the GT T-NOCS points
transformed by the predicted pose and the input points. Qualitative results are in Fig. 4 (right).

Table 4: Reconstructing 10 observed
timesteps (left) and maintaining temporal
correspondences (right) on Warping Cars.

Reconstruction Correspondences
Method CD EMD Dist t1 Dist t10
OFlow 1.512 20.401 0.011 0.031
CaSPR 0.955 11.530 0.013 0.035

Rigid Spatiotemporal Interpolation: The full CaSPR
model can densely sample a sparse input sequence in space-
time as shown in Fig. 7. The model takes three input frames
of 512 points (corresponding GT T-NOCS points shown on
top) and reconstructs an arbitrary number of steps with 2048
points (middle). The representation can be sampled at any ST
resolution but, in practice, is limited by memory. The CNF
maps Gaussian noise to the visible surface (bottom). Points are most dense in high probability areas
(shown in red); in our data this roughly corresponds to where the camera is focused on the object
surface at that timestep.

Figure 6: Deforming
car reconstruction.

Non-Rigid Reconstruction and Temporal Correspondences: CaSPR can
represent and reconstruct deformable objects. We evaluate on a variation of
the Warping Cars dataset introduced in Occupancy Flow (OFlow) [49] which
contains 10-step sequences of full point clouds sampled from ShapeNet [6] cars
deforming over time. The sequences in this dataset are already consistently
aligned and scaled, so CaSPR is trained only using Lr.
Tab. 4 compares CaSPR to OFlow on reconstructing deforming cars at 10
observed time steps (left) and on estimating correspondences over time (right).
To measure correspondence error, we (1) sample 2048 points from the repre-
sentation at t1, (2) find their closest points on the GT mesh, and (3) advect the
samples to t10 and measure the mean distance to the corresponding GT points
at both steps. Tab. 4 reports median errors over all t1 and t10. For OFlow,
samples are advected using the predicted flow field in physical space, while for
CaSPR we simply use the same Gaussian samples at each step of the sequence.

8

CaSPR outperforms OFlow on reconstruction due to overly-smoothed outputs from the occupancy
network, while both methods accurately maintain correspondences over time. Note that CaSPR
advects system state in a learned latent space and temporal correspondences naturally emerge from
the CNF when using consistent base samples across timesteps. Fig. 6 visualizes sampled point
trajectories for one sequence.

Figure 8: Cross-instance
correspondences emerge
naturally using a CNF.

Cross-Instance Correspondences: We observe consistent behavior
from the CNF across objects within a shape category too. Fig. 8 shows
reconstructed frames from various chair and airplane sequences with
points colored by their corresponding location in the sampled Gaussian
(before the flow). Similar colors across instances indicate the same part
of the base distribution is mapped there. This could potentially be used,
for instance, to propagate labels from known to novel object instances.

Learning the Arrow of Time: A desirable property of ST representa-
tions is an understanding of the unidirectionality of time [20]: how objects
evolve forward in time. We demonstrate this property with CaSPR by
training on a dataset of 1000 sequences of a single rigid car where the
camera always rotates counter-clockwise at a fixed distance (but random
height). CaSPR achieves a median CD of 0.298 and EMD of 7.114 when
reconstructing held-out sequences forward in time. However, when the
same test sequences are reversed by flipping the timestamps, accuracy drastically drops to CD 1.225
and EMD 88.938. CaSPR is sensitive to the arrow of time due to the directionality of the Latent
ODE and the global temporal view provided by operating on an entire sequence jointly.

Figure 9: Disentanglement examples on
warping cars data.

Shape & Motion Disentanglement We evaluate how
well CaSPR disentangles shape and motion as a result
of the latent feature splitting zC = [zCST, z

C
dyn]. For this

purpose, we transfer motion between two sequences by
embedding both of them using TPointNet++, then taking
the static feature zCST from the first and the dynamic feature
zCdyn from the second. Fig. 9 shows qualitative results
where each row is a different sequence; the first frame of
the shape sequence is on the left, the point trajectories of
the motion sequence in the middle, and the final CaSPR-
sampled trajectories using the combined feature are on
the right. If these features perfectly disentangle shape and
motion, we should see the shape of the first sequence with
the motion of the second after reconstruction. Apparently,
the explicit feature split in CaSPR does disentangle static
and dynamic properties of the object to a large extent.

6 Conclusion
We introduced CaSPR, a method to canonicalize and obtain object-centric representions of raw point
cloud sequences, which supports spatiotemporal sampling at arbitrary resolutions. We demonstrated
CaSPR’s utility on rigid and deformable object motion and in applications like spatiotemporal
interpolation and estimating correspondences across time and instances.

Limitations and Future Work: CaSPR leaves ample room for future exploration. We currently only
support batch processing, but online processing is important for real-time applications. Additionally,
CaSPR is expensive to train. Our canonicalization step requires dense supervision of T-NOCS labels
which may not be available for real data. While the network is well-suited for ST interpolation, the
extrapolation abilities of CaSPR need further investigation. CaSPR is object-centric, and further
work is needed to generalize to object collections and scenes. Additionally, outlier shapes can cause
noisy sampling results and if the partial view of an object is ambiguous or the object is symmetric,
TPointNet++ may predict a flipped or rotated canonical output.

Finally, using a single CNF for spatial sampling is fundamentally limited by an inability to model
changes in topology [15, 19]. To capture fine-scale geometric details of shapes, this must be addressed.

9

Broader Impact
CaSPR is a fundamental technology allowing the aggregation and propagation of dynamic point
cloud information – and as such it has broad applications in areas like autonomous driving, robotics,
virtual/augmented reality and medical imaging. We believe that our approach will have a mostly
positive impact but we also identify potential undesired consequences below.

Our method will enhance the capabilities of existing sensors and allow us to build models of objects
from sparse observations. For instance, in autonomous driving or mixed reality, commonly used
LIDAR/depth sensors are limited in terms of spatial and temporal resolution or sampling patterns. Our
method creates representations that overcome these limitations due to the capability to continuously
sample in space and time. This would enable these sensors to be cheaper and operate at lower
spacetime resolutions saving energy and extending hardware lifespans. Our approach could also be
useful in spatiotemporal information propagation. We can propagate sparse labels in the input over
spacetime, leading to denser supervision. This would save manual human labeling effort.

Like other learning-based methods, CaSPR can produce biased results missing the details in the
input. In a self driving scenario, if an input LIDAR point cloud only partially observes a pedestrian,
CaSPR may learn representations that misses the pedestrian completely. If real-world systems rely
excessively on this incorrect representation it could lead to injuries or fatalities. We look forward to
conducting and fostering more research in other applications and negative impacts of our work.

Acknowledgments and Funding Disclosure

This work was supported by grants from the Stanford-Ford Alliance, the SAIL-Toyota Center for
AI Research, the Samsung GRO program, the AWS Machine Learning Awards Program, NSF grant
IIS-1763268, and a Vannevar Bush Faculty Fellowship. The authors thank Michael Niemeyer for
providing the code and shape models used to generate the warping cars dataset. Toyota Research
Institute ("TRI") provided funds to assist the authors with their research but this article solely reflects
the opinions and conclusions of its authors and not TRI or any other Toyota entity.

References

[1] Achlioptas, P., Diamanti, O., Mitliagkas, I., Guibas, L.: Learning representations and generative
models for 3d point clouds. In: Proceedings of the International Conference on Machine
Learning (ICML). pp. 40–49. PMLR (2018)

[2] Atanov, A., Volokhova, A., Ashukha, A., Sosnovik, I., Vetrov, D.: Semi-conditional normalizing
flows for semi-supervised learning. arXiv preprint arXiv:1905.00505 (2019)

[3] Behl, A., Paschalidou, D., Donné, S., Geiger, A.: Pointflownet: Learning representations for
rigid motion estimation from point clouds. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). pp. 7962–7971 (2019)

[4] Bertsekas, D.P.: A distributed asynchronous relaxation algorithm for the assignment problem.
In: IEEE Conference on Decision and Control. pp. 1703–1704 (1985)

[5] Biloš, M., Günnemann, S.: Equivariant normalizing flows for point processes and sets. arXiv
preprint arXiv:2010.03242 (2020)

[6] Chang, A.X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z., Savarese, S., Savva,
M., Song, S., Su, H., et al.: Shapenet: An information-rich 3d model repository. arXiv preprint
arXiv:1512.03012 (2015)

[7] Chen, C., Li, C., Chen, L., Wang, W., Pu, Y., Carin, L.: Continuous-time flows for efficient
inference and density estimation. In: Proceedings of the International Conference on Machine
Learning (ICML) (2018)

[8] Chen, D., Li, J., Wang, Z., Xu, K.: Learning canonical shape space for category-level 6d object
pose and size estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). pp. 11973–11982 (2020)

[9] Chen, S.S., Gopinath, R.A.: Gaussianization. In: Proceedings of the Advances in Neural
Information Processing Systems (NeurIPS). pp. 423–429 (2001)

10

[10] Chen, T.Q., Rubanova, Y., Bettencourt, J., Duvenaud, D.K.: Neural ordinary differential
equations. In: Proceedings of the Advances in Neural Information Processing Systems (NeurIPS)
(2018)

[11] Chen, Z., Zhang, H.: Learning implicit fields for generative shape modeling. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). pp. 5939–
5948 (2019)

[12] Choy, C., Gwak, J., Savarese, S.: 4d spatio-temporal convnets: Minkowski convolutional
neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). pp. 3075–3084 (2019)

[13] Choy, C.B., Xu, D., Gwak, J., Chen, K., Savarese, S.: 3d-r2n2: A unified approach for single and
multi-view 3d object reconstruction. In: Proceedings of the European Conference on Computer
Vision (ECCV). pp. 628–644. Springer (2016)

[14] Coddington, E.A., Levinson, N.: Theory of ordinary differential equations. Tata McGraw-Hill
Education (1955)

[15] Cornish, R., Caterini, A.L., Deligiannidis, G., Doucet, A.: Relaxing bijectivity constraints with
continuously indexed normalising flows. arXiv preprint arXiv:1909.13833 (2019)

[16] Davis, J.Q., Choromanski, K., Sindhwani, V., Varley, J., Lee, H., Slotine, J.J., Likhosterov, V.,
Weller, A., Makadia, A.: Time dependence in non-autonomous neural odes. In: ICLR Workshop
on Integration of Deep Neural Models and Differential Equations (2020)

[17] Deng, H., Birdal, T., Ilic, S.: Ppf-foldnet: Unsupervised learning of rotation invariant 3d
local descriptors. In: Proceedings of the European Conference on Computer Vision (ECCV)
(September 2018)

[18] Deng, H., Birdal, T., Ilic, S.: Ppfnet: Global context aware local features for robust 3d point
matching. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). pp. 195–205 (2018)

[19] Dupont, E., Doucet, A., Teh, Y.W.: Augmented neural odes. In: Proceedings of the Advances in
Neural Information Processing Systems (NeurIPS). pp. 3134–3144 (2019)

[20] Eddington, A.: The nature of the physical world: The Giffor Lectures 1927, vol. 23. BoD–Books
on Demand (2019)

[21] Finlay, C., Jacobsen, J.H., Nurbekyan, L., Oberman, A.M.: How to train your neural ode. arXiv
preprint arXiv:2002.02798 (2020)

[22] Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with
applications to image analysis and automated cartography. Communications of the ACM 24(6),
381–395 (1981)

[23] Friedman, J.H.: Exploratory projection pursuit. Journal of the American statistical association
82(397), 249–266 (1987)

[24] Gemici, M.C., Rezende, D., Mohamed, S.: Normalizing flows on riemannian manifolds. arXiv
preprint arXiv:1611.02304 (2016)

[25] Grathwohl, W., Chen, R.T., Bettencourt, J., Sutskever, I., Duvenaud, D.: Ffjord: Free-form
continuous dynamics for scalable reversible generative models. arXiv preprint arXiv:1810.01367
(2018)

[26] Groueix, T., Fisher, M., Kim, V.G., Russell, B.C., Aubry, M.: A papier-mâché approach to
learning 3d surface generation. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). pp. 216–224 (2018)

[27] Grover, A., Dhar, M., Ermon, S.: Flow-gan: Combining maximum likelihood and adversarial
learning in generative models. In: Thirty-Second AAAI Conference on Artificial Intelligence
(2018)

[28] Gu, X., Wang, Y., Wu, C., Lee, Y.J., Wang, P.: Hplflownet: Hierarchical permutohedral lattice
flownet for scene flow estimation on large-scale point clouds. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). pp. 3254–3263 (2019)

[29] Guo, Y., Wang, H., Hu, Q., Liu, H., Liu, L., Bennamoun, M.: Deep learning for 3d point clouds:
A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI) (2020)

11

[30] Hanshu, Y., Jiawei, D., Vincent, T., Jiashi, F.: On robustness of neural ordinary differential
equations. In: Proceedings of the International Conference on Learning Representations (ICLR)
(2019)

[31] Hao, Z., Averbuch-Elor, H., Snavely, N., Belongie, S.: Dualsdf: Semantic shape manipulation
using a two-level representation. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) (2020)

[32] Kanazawa, A., Zhang, J.Y., Felsen, P., Malik, J.: Learning 3d human dynamics from video.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). pp. 5614–5623 (2019)

[33] Kar, A., Tulsiani, S., Carreira, J., Malik, J.: Category-specific object reconstruction from a
single image. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). pp. 1966–1974 (2015)

[34] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

[35] Kingma, D.P., Dhariwal, P.: Glow: Generative flow with invertible 1x1 convolutions. In:
Advances in Neural Information Processing Systems. pp. 10215–10224 (2018)

[36] Kobyzev, I., Prince, S., Brubaker, M.A.: Normalizing flows: Introduction and ideas. arXiv
preprint arXiv:1908.09257 (2019)

[37] Köhler, J., Klein, L., Noé, F.: Equivariant flows: sampling configurations for multi-body systems
with symmetric energies. arXiv preprint arXiv:1910.00753 (2019)

[38] Kutta, W.: Beitrag zur naherungsweisen integration totaler differentialgleichungen. Z. Math.
Phys. 46, 435–453 (1901)

[39] Lea, C., Flynn, M.D., Vidal, R., Reiter, A., Hager, G.D.: Temporal convolutional networks for
action segmentation and detection. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). pp. 156–165 (2017)

[40] Lebowitz, J.L.: Boltzmann’s entropy and time’s arrow. Physics today 46, 32–32 (1993)
[41] Li, X., Wang, H., Yi, L., Guibas, L.J., Abbott, A.L., Song, S.: Category-level articulated object

pose estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). pp. 3706–3715 (2020)

[42] Li, Y., Bu, R., Sun, M., Wu, W., Di, X., Chen, B.: Pointcnn: Convolution on x-transformed
points. In: Proceedings of the Advances in Neural Information Processing Systems (NeurIPS).
pp. 820–830 (2018)

[43] Liu, J., Kumar, A., Ba, J., Kiros, J., Swersky, K.: Graph normalizing flows. In: Advances in
Neural Information Processing Systems. pp. 13556–13566 (2019)

[44] Liu, X., Qi, C.R., Guibas, L.J.: Flownet3d: Learning scene flow in 3d point clouds. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
(2019)

[45] Liu, X., Yan, M., Bohg, J.: Meteornet: Deep learning on dynamic 3d point cloud sequences.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). pp. 9246–9255 (2019)

[46] Lou, A., Lim, D., Katsman, I., Huang, L., Jiang, Q., Lim, S.N., De Sa, C.: Neural manifold
ordinary differential equations. arXiv preprint arXiv:2006.10254 (2020)

[47] Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy networks:
Learning 3d reconstruction in function space. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). pp. 4460–4470 (2019)

[48] Mitra, N.J., Flöry, S., Ovsjanikov, M., Gelfand, N., Guibas, L.J., Pottmann, H.: Dynamic
geometry registration. In: Symposium on geometry processing. pp. 173–182 (2007)

[49] Niemeyer, M., Mescheder, L., Oechsle, M., Geiger, A.: Occupancy flow: 4d reconstruction
by learning particle dynamics. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV). pp. 5379–5389 (2019)

[50] Novotny, D., Ravi, N., Graham, B., Neverova, N., Vedaldi, A.: C3dpo: Canonical 3d pose
networks for non-rigid structure from motion. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV). pp. 7688–7697 (2019)

12

[51] Onken, D., Fung, S.W., Li, X., Ruthotto, L.: Ot-flow: Fast and accurate continuous normalizing
flows via optimal transport. arXiv preprint arXiv:2006.00104 (2020)

[52] Papamakarios, G., Nalisnick, E., Rezende, D.J., Mohamed, S., Lakshminarayanan, B.: Nor-
malizing flows for probabilistic modeling and inference. arXiv preprint arXiv:1912.02762
(2019)

[53] Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: DeepSDF: Learning continuous
signed distance functions for shape representation. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR) (2019)

[54] Pickup, L.C., Pan, Z., Wei, D., Shih, Y., Zhang, C., Zisserman, A., Scholkopf, B., Freeman,
W.T.: Seeing the arrow of time. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). pp. 2035–2042 (2014)

[55] Prantl, L., Chentanez, N., Jeschke, S., Thuerey, N.: Tranquil clouds: Neural networks for
learning temporally coherent features in point clouds. In: Proceedings of the International
Conference on Learning Representations (ICLR) (2020)

[56] Pumarola, A., Popov, S., Moreno-Noguer, F., Ferrari, V.: C-flow: Conditional generative flow
models for images and 3d point clouds. Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV) (2020)

[57] Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: Deep learning on point sets for 3d classification
and segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). pp. 652–660 (2017)

[58] Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: Deep hierarchical feature learning on point
sets in a metric space. In: Advances in neural information processing systems (2017)

[59] Rezende, D., Mohamed, S.: Variational inference with normalizing flows. In: International
Conference on Machine Learning. pp. 1530–1538 (2015)

[60] Rezende, D.J., Racanière, S., Higgins, I., Toth, P.: Equivariant hamiltonian flows. arXiv preprint
arXiv:1909.13739 (2019)

[61] Rippel, O., Adams, R.P.: High-dimensional probability estimation with deep density models.
arXiv preprint arXiv:1302.5125 (2013)

[62] Rubanova, Y., Chen, T.Q., Duvenaud, D.K.: Latent ordinary differential equations for irregularly-
sampled time series. In: Proceedings of the Advances in Neural Information Processing Systems
(NeurIPS) (2019)

[63] Runge, C.: Über die numerische auflösung von differentialgleichungen. Mathematische Annalen
46(2), 167–178 (1895)

[64] Runz, M., Buffier, M., Agapito, L.: Maskfusion: Real-time recognition, tracking and recon-
struction of multiple moving objects. In: International Symposium on Mixed and Augmented
Reality (ISMAR). pp. 10–20. IEEE (2018)

[65] Salman, H., Yadollahpour, P., Fletcher, T., Batmanghelich, K.: Deep diffeomorphic normalizing
flows. arXiv preprint arXiv:1810.03256 (2018)

[66] Shen, Y., Feng, C., Yang, Y., Tian, D.: Mining point cloud local structures by kernel correlation
and graph pooling. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). vol. 4 (2018)

[67] Shotton, J., Glocker, B., Zach, C., Izadi, S., Criminisi, A., Fitzgibbon, A.: Scene coordinate
regression forests for camera relocalization in rgb-d images. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). pp. 2930–2937 (2013)

[68] Sitzmann, V., Thies, J., Heide, F., Nießner, M., Wetzstein, G., Zollhofer, M.: Deepvoxels:
Learning persistent 3d feature embeddings. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). pp. 2437–2446 (2019)

[69] Sridhar, S., Rempe, D., Valentin, J., Bouaziz, S., Guibas, L.J.: Multiview aggregation for
learning category-specific shape reconstruction. In: Proceedings of the Advances in Neural
Information Processing Systems (NeurIPS) (2019)

[70] Su, H., Jampani, V., Sun, D., Maji, S., Kalogerakis, E., Yang, M.H., Kautz, J.: Splatnet: Sparse
lattice networks for point cloud processing. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). pp. 2530–2539 (2018)

13

[71] Sun, H., Mehta, R., Zhou, H.H., Huang, Z., Johnson, S.C., Prabhakaran, V., Singh, V.: Dual-
glow: Conditional flow-based generative model for modality transfer. In: Proceedings of the
IEEE International Conference on Computer Vision. pp. 10611–10620 (2019)

[72] Tabak, E.G., Turner, C.V.: A family of nonparametric density estimation algorithms. Communi-
cations on Pure and Applied Mathematics 66(2), 145–164 (2013)

[73] Thomas, H., Qi, C.R., Deschaud, J.E., Marcotegui, B., Goulette, F., Guibas, L.J.: Kpconv:
Flexible and deformable convolution for point clouds. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV). pp. 6411–6420 (2019)

[74] Varanasi, K., Zaharescu, A., Boyer, E., Horaud, R.: Temporal surface tracking using mesh
evolution. In: Proceedings of the European Conference on Computer Vision (ECCV). pp. 30–43.
Springer (2008)

[75] Varol, G., Laptev, I., Schmid, C.: Long-term temporal convolutions for action recognition. IEEE
Transactions on Pattern Analysis and Machine Intelligence (T-PAMI) 40(6), 1510–1517 (2017)

[76] Vedula, S., Baker, S., Rander, P., Collins, R., Kanade, T.: Three-dimensional scene flow. In:
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (1999)

[77] Villani, C.: Optimal transport: old and new, vol. 338. Springer Science & Business Media
(2008)

[78] Wang, H., Sridhar, S., Huang, J., Valentin, J., Song, S., Guibas, L.J.: Normalized object
coordinate space for category-level 6d object pose and size estimation. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). pp. 2642–2651
(2019)

[79] Wang, N., Zhang, Y., Li, Z., Fu, Y., Liu, W., Jiang, Y.G.: Pixel2mesh: Generating 3d mesh
models from single rgb images. In: Proceedings of the European Conference on Computer
Vision (ECCV) (2018)

[80] Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic graph cnn
for learning on point clouds. ACM Transactions on Graphics 38(5), 1–12 (2019)

[81] Wang, Z., Li, S., Howard-Jenkins, H., Prisacariu, V., Chen, M.: Flownet3d++: Geometric losses
for deep scene flow estimation. In: IEEE Winter Conference on Applications of Computer
Vision (WACV). pp. 91–98 (2020)

[82] Wu, Y., He, K.: Group normalization. In: Proceedings of the European Conference on Computer
Vision (ECCV). pp. 3–19 (2018)

[83] Yang, G., Huang, X., Hao, Z., Liu, M.Y., Belongie, S., Hariharan, B.: Pointflow: 3d point cloud
generation with continuous normalizing flows. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV). pp. 4541–4550 (2019)

[84] Yang, Z., Litany, O., Birdal, T., Sridhar, S., Guibas, L.: Continuous geodesic convolutions
for learning on 3d shapes. In: IEEE Winter Conference on Applications of Computer Vision
(WACV) (2021)

[85] Yew, Z.J., Lee, G.H.: Rpm-net: Robust point matching using learned features. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). pp. 11824–
11833 (2020)

[86] Zakharov, S., Kehl, W., Bhargava, A., Gaidon, A.: Autolabeling 3d objects with differentiable
rendering of sdf shape priors. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). pp. 12224–12233 (2020)

[87] Zhang, C., Fiore, M., Murray, I., Patras, P.: Cloudlstm: A recurrent neural model for spatiotem-
poral point-cloud stream forecasting. arXiv preprint arXiv:1907.12410 (2019)

[88] Zhang, H., Gao, X., Unterman, J., Arodz, T.: Approximation capabilities of neural ordinary
differential equations. arXiv preprint arXiv:1907.12998 (2019)

[89] Zhang, L., Wang, L., et al.: Monge-ampere flow for generative modeling. arXiv preprint
arXiv:1809.10188 (2018)

[90] Zhang, S., Guo, S., Huang, W., Scott, M.R., Wang, L.: V4d: 4d convonlutional neural networks
for video-level representation learning. In: Proceedings of the International Conference on
Learning Representations (ICLR) (2020)

14

[91] Zhao, Y., Birdal, T., Deng, H., Tombari, F.: 3d point capsule networks. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). pp. 1009–1018
(2019)

[92] Zhao, Y., Birdal, T., Lenssen, J.E., Menegatti, E., Guibas, L., Tombari, F.: Quaternion equivari-
ant capsule networks for 3d point clouds. arXiv preprint arXiv:1912.12098 (2019)

15

Appendices

We expand on discussions in Sec. A, provide additional evaluations in Sec. B, explain details of
dataset generation and architecture implementation in Sec. C and Sec. D, and give details of
experiments from the main paper in Sec. E.

A Discussions

Remarks on ODE-Nets The requirements of homeomorphisms and differentiability impose certain
limitations. First, neural ODEs lack a universal approximation capability as non-intersecting trajec-
tories cannot learn to approximate arbitrary topologies [88]2. On the other hand, it is also shown
that this very property brings intrinsic robustness to ODE-Nets [30]. Moreover, the requirement of
invertibility in CNFs is proven to hamper the approximation quality of the target distribution [15].
In fact, for a perfect recovery and likelihood evaluation, non-invertibility is a requirement [15].
Nonetheless, the extent to which these limitations restrict the applicability of Neural ODEs and CNFs
is still an active research topic.

Why can’t we use existing point cloud networks as a canonicalizer? Extending PointNet++ to
time (similar to MeteorNet [45]) requires some form of a spatiotemporal neighborhood query or
using time as an auxiliary input feature diminishing its contribution. Spatiotemporal neighborhood
queries are undesirable as they necessitate difficult hyperparameter tuning and limit the network’s
ability to holistically understand the motion. For example, learning the arrow of time (as CaSPR does
in Sec. 5 of the main paper) would be difficult when using local spatiotemporal queries. PointNet can
somewhat remedy this by operating on the full 4D point cloud at once, treating time equally important
as the spatial dimensions. However, we found that PointNet by itself is incapable of extracting
descriptive local features, which are essential for an accurate mapping to T-NOCS.

On the arrow of time Due to the second law of thermodynamics, the entropy of an isolated system
tends to increase with time, making the direction of time irreversible [40] i.e. it is more common
for a motion to cause multiple motions than for multiple motions to collapse into one consistent
motion [54]. This causality is confirmed in computer vision by showing that the statistics of natural
videos are not symmetric under time reversal [54]. Any method processing spacetime inputs should
then be sensitive to this direction so as to yield distinctive representations rather than being invariant
to it. As shown in the experiments of the main paper, thanks to the inclusion of timestamps and the
Latent ODE advecting forward in time, CaSPR is highly aware of this unidirectionality and it is one
of the reasons why it can extract robust spatiotemporal latent features.

On disentanglement In the main paper, we have demonstrated experimentally that static and dy-
namic feature disentanglement is achieved to a large extent. Note that CaSPR involves no mechanism
that can guarantee a theoretically disentangled latent space such as the one of [92]. Our design
softly encourages the canonicalization network to respect the subspace nature by only advecting
the dynamic feature with the ODE. Though this is not a CaSPR-specific drawback and many SoTA
disentanglement networks rely upon the same intuition.

Limitations Using a CNF to sample the object surface does come with some limitations as men-
tioned in prior work [83] and discussed above. The inherent properties of CNFs may hamper the
ability to capture fine-scale geometric detail. We observe this in chairs with back slats and other thin
structures that are not captured by our Reconstruction CNF as shown in the left panel of Fig. A1.
Additionally, outlier shapes can cause noisy sampling results (shown in the middle). One current
limitation of TPointNet++ is its inability to handle symmetry when canonicalizing a point cloud
sequence. If the partial view of an object is ambiguous or the object is symmetric, TPointNet++ may
predict a flipped or rotated canonical output as shown in the right panel.

2Augmented-Neural ODEs [64] propose to operate on a higher dimensional space as one workaround.

16

Figure A1: Failure cases of CaSPR. The CNF has difficulty capturing local details and very thin
structures (left) along with uncommon shapes (middle). TPointNet++ has trouble with symmetry or
ambiguity in partial views, resulting in reflected or rotated predictions (right).

B Additional Evaluations Table B1: CaSPR ablations for reconstruction of
rigid car sequences over 10 observed frames.

Method CD EMD NFE
No Lc 0.605 11.482 38.2
No Factorization 0.635 11.249 101.3
No Input Aug 0.577 10.253 38.9
Full Arch 0.566 10.103 39.6

We provide evaluations of CaSPR omitted from
the main paper due to space constraints. Please
see Section 5 of the main paper for an expla-
nation of evaluation metrics and the primary
results.

B.1 Ablation Study
Table B2: Reconstruction errors
with varying numbers of input
points per frame for rigid car mo-
tion.

Num Points CD EMD
2048 0.5657 10.1028
1024 0.5486 10.0339
512 0.5904 10.5188
256 0.8222 13.8275
128 1.4730 20.7233

We compare the full CaSPR architecture (Full Arch) to multiple
ablations in Tab. B1. This includes: (i) not using the canonical-
ization loss (No Lc), (ii) not factorizing the latent ST feature
and instead feeding the entire vector to the Latent ODE (No
Factorization), and (iii) using no pairwise terms (see Sec. D) as
input augmentation (No Input Aug). In addition to reconstruc-
tion metrics, we report the mean number of function evaluations
(NFE) for the Latent ODE. This is the average number of times
the ODE solver queries the dynamics network while integrating
forward in time for a single sequence. Each method is trained
on the rigid cars category and reconstructs all 10 input frames
for evaluation. The full CaSPR architecture performs best. Note that the static/dynamic feature
factorization is especially important to limit the complexity of Latent ODE dynamics.

B.2 Sparsity in Space and Time

We evaluate CaSPR’s ability to reconstruct partial point cloud sequences from the rigid car category
under sparsity in both space and time. Given 10 input frames, Tab. B2 shows the performance
for reconstructing all 10 observed frames with a varying number of points available at each frame.

Table B3: Reconstruction errors with a vary-
ing number of observed input frames.

Observed Unobserved
Num Observed CD EMD CD EMD
10 steps 0.5657 10.1028 — —
7 steps 0.5701 10.3406 0.5609 10.0304
5 steps 0.5664 10.4310 0.5620 10.3374
3 steps 0.5904 11.4641 0.5837 11.2586
2 steps 0.7095 14.8348 0.7233 16.3499

Performance is consistent until 256 or fewer points
are given at which point it drops off rapidly. Tab. B3
shows performance when varying the number of avail-
able observed timesteps for each test sequence. Ob-
served timesteps are distributed as evenly as possible
over the 10-step sequence for this evaluation. Per-
formance is stable even with 3 observed frames, but
does significantly drop when only 2 frames are given
(i.e. the first and last steps).

B.3 Reconstructing Longer Sequences
Table B4: Reconstruction errors for
longer sequences on rigid car data.

Test Seq Length CD EMD
10 0.566 10.103
25 0.534 10.815

We evaluate CaSPR when trained on the rigid motion car dataset
with sequences of 25 frames (rather than 10 as in the main
paper). During training, we randomly subsample 10 frames
(rather than 5) from each sequence, and evaluate with the full
25-frame sequence as input (rather than 10). Tab. B4 shows reconstruction performance compared to
the model in the main paper which uses the 10-frame sequence dataset. We see there is a minimal
difference in performance, indicating CaSPR is capable of handling longer-horizon motion.

17

B.4 Multi-Category Model Table B5: Reconstruction errors training
on all categories jointly.

Train Data Test Data CD EMD
Cars Cars 0.566 10.103
All Cars 0.728 13.631

Chairs Chairs 0.715 13.009
All Chairs 1.231 15.632

Airplanes Airplanes 0.231 6.026
All Airplanes 0.391 8.213

All All 0.798 12.578

We evaluate CaSPR when trained on all shape categories
together: cars, chairs, and airplanes. This determines
the extent of the category-level restriction on our method.
Results compared to models trained on each category sep-
arately are shown in Tab. B5. Models are evaluated by
reconstructing all 10 observed time steps. As expected,
there is a performance drop when training a single joint
model, however errors are still reasonable and in most
cases better than the PointFlow baseline in terms of EMD
(see Tab. 2 in main paper).

B.5 Canonicalizing for Deformation

Table B6: Canonicalization perfor-
mance for deforming cars.

Method Spatial Err Time Err
Identity 0.0583 0.0000

TPointNet++ 0.0221 0.0012
We evaluate the ability of TPointNet++ to canonicalize non-
rigid transformations. Given a deforming car sequence from
the Warping Cars dataset, the task is to remove the deformation
at each step, leaving the base shape without any warping. To achieve this, we train TPointNet++ with
Lc only, and supervise every step in a sequence with the same GT canonical point cloud that contains
no deformation. Note that Warping Cars is already canonical in terms of rigid transformations, so
the network needs to learn to factor out non-rigid deformation only. Results are shown in Tab. B6
where we compare TPointNet++ to a baseline that simply copies the input points to the output
(Identity, which performs reasonably since there is no rigid transformation). Identity trivially gives a
perfect time error, but TPointNet++ achieves a much lower spatial error, effectively removing the
deformation from each step. This is qualitatively shown in Fig. E6. This strategy of canonicalization
offers an explicit way to extract temporal correspondences over time, rather than relying on the CNF
to naturally exhibit correspondences (main paper Sec. 5).

B.6 Label Propagation through Canonicalization

We evaluate the ability of T-NOCS canonicalization to establish correspondences by propagating
point-wise labels both throughout a sequence and to new sequences of different object instances.
Given a semantic segmentation of the partial point cloud at the first frame of a sequence at time s1,
the first task is to label all subsequent steps in the sequence at times s2, . . . , sk, i.e. propagate the
segmentation forward in time. Secondly, we want to label all frames of sequences containing different
object instances i.e. propagate the segmentation to different objects of the same class. We achieve
both through canonicalization with TPointNet++: all frames in each sequence are mapped to T-NOCS,
then unknown points are labeled by finding the closest point in the given labeled frame at s1. If the
closest point in s1 is not within a distance of 0.05 in the canonical space, it is marked “Unknown".
This may happen if part of the shape is not visible in the first frame due to self-occlusions.

Table B7: Segmentation label propagation
performance. Total Acc is point-wise accu-
racy over all points; Known Acc is only for
points that our method successfully labels.

Task Category Total Acc Known Acc
Temporal Chairs 0.9419 0.9804

Propagation Airplanes 0.9580 0.9676

Instance Chairs 0.6553 0.8425
Propagation Airplanes 0.7744 0.8006

Results of this label propagation for a subset of
the chairs (1315 sequences) and airplanes (1215 se-
quences) categories of the rigid motion test set are
shown in Tab. B7. We report median point-wise
accuracy over all points (Total Acc) and for points
successfully labeled by our approach (Known Acc).
For the instance propagation task, we randomly use
1/3 of test sequences as “source" sequences where
the first frame is labeled, and the other 2/3 are “tar-
get" sequences to which labels are propagated. In
this case, accuracy is reported only for target sequences. Qualitative results are shown in Fig. B1.

B.7 Extrapolating Motion

We evaluate CaSPR’s ability to extrapolate future motion without being explicitly trained
to do so. In particular, the model is given the first 5 frames in each sequence and
must predict the following 5 frames. The ability to predict future motion based on the

18

Figure B1: Example of semantic segmentation label propagation over time and across instances
through T-NOCS canonicalization. The given labels in the first frame of the top sequence (orange
box) are transferred to later frames in the same sequence (green dashed box) and to other sequences
with different object instances (blue dashed boxes) by comparing to the labeled frame in the shared
canonical space.

learned prior would be valuable in real-time settings. We evaluate the already-trained
full reconstruction models for each object category (from Tab. 2 in the main paper).

Table B8: Reconstruction of extrap-
olated frames.

5 Observed 5 Extrapolated
Category CD EMD CD EMD

Cars 0.597 9.833 1.023 21.055
Chairs 0.687 12.502 1.010 20.648

Airplanes 0.224 5.719 0.286 9.625

Note that these models are supervised with observed frames
- they are not trained to predict unseen future states. Results
are shown in Tab. B8. Clearly there is a sharp performance
drop between observed and extrapolated frames as we might
expect, though performance is actually on par with the AtlasNet
baseline (Tab. 2, main paper) in some cases. We note that
qualitatively, the model produces reasonable future motion
based on what it has seen and even hallucinates unseen parts of the shape, though it cannot handle
sudden changes in direction.

C Datasets Details

Rigid Motion Dataset Please see Section 5 of the main paper for an introduction to our new dataset
containing rigid motion for ShapeNet [6] cars, chairs, and airplanes. This simulated dataset gives us
the ability to capture a wide range of trajectories and acquire the necessary inputs and supervision to
train and evaluate CaSPR.

Figure C1: NOCS
map from rigid mo-
tion dataset.

We generate these motions within the Unity game engine3. For each object
instance, we simulate a camera trajectory around the object (placed at the
origin) that starts at a random location and continues for 50 timesteps. The
camera always points towards the origin and its location is parameterized as
a point on the surface of a sphere centered at the origin: by a longitudinal
and latitudinal angle along with a radius. To produce a trajectory, each of
these parameters is gradually increased or decreased independently. When a
parameter reaches a set limit, its direction is reversed, producing interesting
and challenging motions. At each step of the trajectory, a depth map and
NOCS map [78] are rendered from the current camera view. An example
NOCS map from the dataset is shown in Fig. C1. Example camera trajectories
and the resulting aggregate canonical point cloud are shown in Fig. E4.

3https://unity.com/

19

Figure C2: Examples from the rigid motion dataset. Partial point cloud sequences resulting from
rendered data depth maps are shown; color shifts from blue to red over time.

The rendered frames are further processed to produce the final dataset of raw depth and canonical
T-NOCS point cloud sequences. The rendered trajectory for each object instance is split into 5
sequences (with 10 steps each). 4096 pixels on the object are uniformly sampled from each depth
map to extract raw partial point cloud sequences in the world (camera) frame that are used as the
input to CaSPR. Examples of these partial sequences are shown in Fig. C2. Each input point cloud in
a sequence is given a timestamp in uniform steps from 0.0 to 5.0. The same sampled pixels are taken
from the NOCS map to extract a corresponding canonical partial point cloud and given a timestamp
from 0.0 to 1.0: this represents the supervision for CaSPR. In total, the car category contains 2527
object instances (12, 635 sequences), chairs contains 5000 objects (25, 000 sequences), and airplanes
has 4045 objects (20, 225 sequences). Each category is split 80/10/10 into train/val/test. The val/test
sets are entirely made up of object instances and camera motions that do not appear in the training
split.

Note that during training and inference, only a subset of the available 4096 points at each step
in the dataset are used, as detailed in the main paper (usually 1024 during training and 2048
during evaluation). Additionally, during training a subset of the available 10 frames are randomly
sampled from each sequence, giving non-uniform step sizes between observations. These subsampled
sequences are shifted so that s1 = 0.0 before being given to CaSPR, making things practically easier
as it ensures that the Latent ODE always starts from t1 = 0 for any sequence in a batch.

Warping Cars Dataset In Section 5.1 of the main paper (“Non-Rigid Reconstruction and Tem-
poral Correspondences"), we use a variation of the Warping Cars dataset from Occupancy Flow
(OFlow) [49]. We generate our version of this dataset with code kindly provided by the authors of
that work. The dataset contains the same car models as our rigid motion dataset, however they are
watertight versions that allow determining occupancy, which is needed to train OFlow. Same as the
rigid motion dataset, we generate 5 sequences for each car instance with 10 frames of motion each.
Consistent with the OFlow paper, we sample 100k points per sequence on the surface of the object
that are in correspondence over time and can be used as inputs to CaSPR and OFlow; we also sample
100k points in the unit cube containing the object with corresponding occupancy labels for OFlow.
Note that this data gives point clouds on the complete object rather than the partial surface, and there
is no rigid motion in the dataset – only deformation. This means the sequences are already canonical
in the sense that cars are consistently aligned and scaled. We also use input timestamps from 0.0 to
1.0, so the data is already canonical in time as well.

D Implementation Details

We next cover additional architectural and training details of our method. Please see Section 4.1 of
the main paper for the primary discussion of our architecture and training procedure. We implement
our method using PyTorch4.

4https://pytorch.org/

20

TPointNet++ The PointNet [57] component operates on the entire 4D input point cloud and
extracts a 1024-dimensional global feature and 64-dimensional per-point features. We use the vanilla
classification PointNet architecture with 3 shared fully-connected (FC) layers (64, 128, 1024), ReLU
non-linearities, and a final max-pool function. The per-point features come from the output of the
first FC layer, while the global feature is the output of the max-pool. We do not use the input or
feature transform layers, and replace all batch normalization with group normalization [82] using 16
groups, which is crucial to good performance with small batch sizes.

The PointNet++ [58] component operates on each frame of the point cloud sequence in-
dependently and does not receive the timestamp as input. The input points to this part
of the network are augmented with pairwise terms x2, y2, z2, xy, yz, and xz, which
we found improves reconstruction performance (see Sec. B.1). We use a modified ver-
sion of the segmentation architecture which contains 5 set abstraction (SA) layers (Point-
Net dimensions, radii, number points out): ([[16, 16, 32], [32, 32, 64]], [0.8, 0.4], 1024) →
([[32, 32, 64], [32, 32, 64]], [0.4, 0.2], 512) → ([[64, 64, 128], [64, 96, 128]], [0.2, 0.1], 256) →
([[128, 256, 256], [128, 256, 256]], [0.1, 0.05], 64)→ ([[256, 256, 512], [256, 256, 512]], [0.05, 0.02], 16).
These are followed by 5 feature propagation (FP) layers which each have 2 layers with hidden size
512, and a final shared MLP with layers (512, 512) to produce the final per-point 512-dimensional
local feature. ReLU non-linearities are used throughout, and we again replace all batch normalization
with group normalization [82] using 16 groups.

The final shared MLP which processes the concatenated features from PointNet and PointNet++ also
uses group normalization and ReLU.

There are a few things of note with this architecture. First of all, it avoids any spatiotemporal
neighborhood queries since time is handled entirely with PointNet which treats the timestamps as
an additional spatial dimension. This allows the network to decide which time windows are most
important to focus on. Second, the architecture can easily generalize to sequences with differing
numbers of points and frames since both are processed almost entirely independently (the only
components affected by changing these at test-time are the PointNet max-pooling and the PointNet++
spatial neighborhood queries).

Latent ODE The Latent ODE is given a 64-dimensional latent state z0 , zCdyn which can be
advected to any canonical timestamp from 0.0 to 1.0. The dynamics of the Latent ODE is an
MLP with 3 hidden layers (512, 512, 512) which uses Tanh non-linearities. We use the torchdiffeq
package5 [10] which implements both the ODE solver along with the adjoint method to enable
backpropagation. We use the dopri15 solver which is an adaptive-step Runge-Kutta 4(5) method. We
use a relative tolerance of 1e-3 and absolute tolerance of 1e-4 both at training and test time.

Reconstruction CNF Our reconstruction CNF adapts the implementation of FFJORD [25] for
point clouds from PointFlow [83]. The dynamics of the CNF are parameterized by a neural network
that uses 3 hidden ConcatSquashLinear layers (512, 512, 512), which are preceeded and followed by
a Moving Batch Normalization layer. We use Softplus non-linearities after each layer. Please see [83]
for full details. In short, each layer takes as input the current hidden state (512-dimensional at hidden
layers or 3-dimensional x, y, z at the first layer), the conditioning shape feature (1600-dimensional
in CaSPR), and the current time of the flow (scalar), and uses this information to update the hidden
state (or output the 3-dimensional derivative at the last layer). The ODE is again solved using
dopri15, this time with both a relative and absolute tolerence of 1e-5. We use the adjoint method for
backpropagation and jointly optimize for the final flow time T along with the parameters of network.

Training and Inference In practice, the full loss function is L = wrLr+wcLc where the contribu-
tions of the reconstruction and canonicalization terms are weighted as wr = 0.01 and wc = 100 as to
be similar scales. No weight decay is used. We use the Adam [34] optimizer (β1 = 0.9, β2 = 0.999)
with a learning rate of 1e-4. During training, we periodically compute the validation set loss, and
after convergence use the weights with the best validation performance as the final trained model.
The number of epochs trained depends on the dataset and the task. We train across up to 4 NVIDIA
Tesla V100 GPUs which allows for a batch size of up to 20 sequences of 5 frames each. As noted in
previous work [83], solving and backpropagating through ODEs (two in our case: Latent and CNF)

5https://github.com/rtqichen/torchdiffeq

21

results in slow training: it takes about 5 days for the full CaSPR architecture using the multi-gpu setup.
The full CaSPR network contains about 16 million trainable parameters. Inference for a 10-step
sequence of rigid car motion with 2048 points at each step takes on average 0.598 seconds.

E Experimental Details and Supplemental Results

Here we give details of experiments shown in Section 5 of the main paper along with some supporting
results for these experiments (e.g. means, standard deviations, and visualizations).

Evaluation Procedure To evaluate reconstruction error, we use the Chamfer Distance (CD) and
Earth Mover’s Distance (EMD). For our purposes, we define the CD and EMD between two point
clouds X1,X2 each with N points as

dCD (X1,X2) =
1

N

∑
x1∈X1

min
x2∈X2

‖x1 − x2‖22 +
1

N

∑
x2∈X2

min
x1∈X1

‖x1 − x2‖22

dEMD (X1,X2) = min
φ:X1→X2

1

N

∑
x1∈X1

‖x1 − φ(x1)‖22

where φ : X1 → X2 is a bijection. In practice, we use a fast approximation of the EMD based on [4].
Both CD and EMD are always reported multiplied by 103.

Table E1: Canonicalization performance mean and
(standard deviation). Supplements Tab. 1 in the main
paper.

Method Category Spatial Err Time Err
MeteorNet Cars 0.0834 (0.0801) 0.0002 (0.0015)

PointNet++ No Time 0.0649 (0.0468) —
PointNet++ w/ Time 0.0715 (0.0811) 0.0006 (0.0012)

PointNet 0.0485 (0.0952) 0.0016 (0.0015)
TPointNet++ No Aug 0.0225 (0.0501) 0.0015 (0.0014)

TPointNet++ No Time 0.0224 (0.0570) —

TPointNet++ Cars 0.0229 (0.0617) 0.0013 (0.0012)
TPointNet++ Chairs 0.0162 (0.0337) 0.0008 (0.0006)
TPointNet++ Airplanes 0.0148 (0.0412) 0.0009 (0.0007)

As noted in the main paper, for these recon-
struction metrics and the canonicalization er-
ror metrics, we report the median values over
all test frames. This is motivated by the fact
that ShapeNet [6] contains some outlier shapes
which result in large errors that unfairly bias
the mean and do not accurately reflect compre-
hensive method performance. For completeness,
we also report mean and standard deviation for
these metrics in this document for main paper
experiments. Note that CD and EMD, along
with the spatial canonicalization error, are all
reported in the canonical space where the shape lies within a unit cube. This helps intuit the severity
of reported errors.

Although we randomly subsample 1024 points at each frame for training, during evaluation we
always use the same 2048 points (unless specifically stated otherwise) to make evaluation consistent
across compared methods. Unless otherwise stated, CaSPR and all compared baselines reconstruct
the same number of points as in the input (e.g. for evaluation, each input frame has 2048 points, so
we sample 2048 points from our Reconstruction CNF).

Canonicalization In this experiment, we train TPointNet++ by itself with only the canonicalization
loss Lc on each category of the rigid motion dataset. In order to make the number of parameters
comparable across all baselines, we use hidden layers of size 1024 (rather than 1600) in the final
shared MLP for the full TPointNet++ architecture only. We compare to the following baselines which
are all trained with the same Lc:
• MeteorNet [45]: A recent method that extends PointNet++ to process point cloud sequences through

spatiotemporal neighborhood queries. We adapt the MeteorNet-seg version of the architecture with
direct grouping for our task by adding an additional meteor direct module layer, as well as two fully
connected layers before the output layer. Additionally, we slightly modify feature sizes to make the
model capacity comparable to other methods. We found the spatiotemporal radii hyperparameters
difficult to tune and in the end we opted for 10 uniformly sampled radii between (0.03, 0.05) in the
first layer, which were doubled in each subsequent layer.

• PointNet++ No Time: An ablation of TPointNet++ that removes the PointNet component. This
leaves PointNet++ processing each frame independently followed by the shared MLP, and therefore
has no notion of time.

22

Table E3: Partial surface sequence reconstruction results showing mean and (standard deviation).
Supplements Tab. 2 in the main paper.

10 Observed 3 Observed 7 Unobserved
Method Category CD EMD CD EMD CD EMD
PointFlow Cars 0.537 (0.272) 15.986 (11.130) 0.538 (0.270) 15.967 (11.065) 0.700 (0.732) 17.362 (12.276)
CaSPR-Atlas Cars 0.814 (1.729) 26.922 (28.562) 0.874 (2.051) 29.171 (29.479) 0.853 (1.705) 26.416 (27.582)
CaSPR Cars 0.795 (1.048) 14.242 (21.619) 0.846 (1.261) 16.564 (24.296) 0.824 (1.108) 16.217 (23.011)

PointFlow Chairs 0.907 (0.519) 20.254 (11.938) 0.907 (0.514) 20.225 (11.899) 1.245 (1.299) 21.971 (13.417)
CaSPR-Atlas Chairs 1.007 (1.243) 54.406 (24.970) 1.030 (1.221) 54.827 (25.250) 1.061 (1.277) 52.964 (24.355)
CaSPR Chairs 1.013 (1.426) 15.287 (9.837) 0.972 (1.498) 15.757 (11.154) 1.000 (1.542) 16.145 (11.620)

PointFlow Airplanes 0.367 (0.366) 11.852 (8.768) 0.366 (0.363) 11.862 (8.725) 0.446 (0.527) 12.335 (9.146)
CaSPR-Atlas Airplanes 0.587 (1.196) 23.444 (17.386) 0.653 (1.369) 23.165 (16.932) 0.663 (1.400) 22.661 (16.853)
CaSPR Airplanes 0.536 (1.468) 8.827 (12.650) 0.536 (1.682) 8.992 (13.219) 0.530 (1.673) 9.031 (12.792)

• PointNet++ w/ Time: This is the same ablation as above, but modified so that the PointNet++
receives the timestamp of each point as an additional input feature. Note that local neighborhood
queries are still performed only on spatial points, but they may be across timesteps so we use
increased radii of (0.05, 0.1, 0.2, 0.6, 1.2, 2.0). This baseline represents a naive way to incorporate
time, but dilutes its contributions since it is only an auxiliary feature.

• PointNet: An ablation of TPointNet++ that removes the PointNet++ component. This leaves only
PointNet operating on the full 4D spatiotemporal point cloud. This baseline treats time equally as
the spatial dimensions, but inherently lacks local geometric features.

• TPointNet++ No Time: An ablation of TPointNet++ that only regresses the spatial part of the
T-NOCS coordinate (and not the normalized timestamp). This baseline still takes the timestamps
as input, it just doesn’t regress the last time coordinate.

• TPointNet++ No Aug: An ablation of TPointNet++ that does not augment the input points to
PointNet++ with pairwise terms as described previously. This baseline was omitted from the main
paper for brevity, so a comparison of median performance is shown in Tab. E2.

Table E2: Canonicalization performance without
input augmentation.

Method Category Spatial Err Time Err
No Aug Cars 0.0138 0.0012

Full Arch Cars 0.0118 0.0011

Each model is trained for 220 epochs on the cars
category. TPointNet++ is trained for 120 and 70
epochs on the airplanes and chairs categories, respec-
tively, due to the increased number of objects. Me-
dian canonicalization errors are in Tab. 1 of the main
paper; the mean and standard deviations are shown
in Tab. E1.

Representation and Reconstruction In this experiment, we compare the full CaSPR architecture
to two baselines on the task of reconstructing a partial point cloud sequence.

The baselines represent one alternative to achieve spatial continuity, and one to achieve temporal
continuity. The CaSPR-Atlas baseline is the full CaSPR architecture as described, but replaces
the Reconstruction CNF with an AtlasNet [26] decoder. We use the same decoder as the original
AtlasNet. This decoder contains 64 MLPs, each responsible for transforming a patch to the partial
visible surface at a desired timestep. Each MLP contains 4 hidden layers (1600, 1600, 800, 400) with
Tanh activation functions. This version of CaSPR is still trained with the auxiliary canonicalization
task (Lc loss), but the reconstruction loss is now a Chamfer distance since AtlasNet does not support
likelihood evaluations like a CNF. We use group normalization [82] instead of batch normalization
within the decoder to improve performance with small batch sizes.

The PointFlow [83] baseline uses their deterministic autoencoder architecture. This follows the
autoencoding evaluations from the original paper and uses a PointNet-like encoder to extract a
shape feature, which conditions a CNF decoder. This version of the model is trained only with the
reconstruction likelihood objective from the CNF, and does not use the various losses associated with
the VAE formulation of their architecture. To make it a fair comparison, we increase the size of the
shape feature bottleneck to 1600. The CNF decoder uses a dynamics MLP with 3 hidden layers of
size (512, 512, 512), just like CaSPR. Also like CaSPR, we train PointFlow with a learning rate of
1e-4, which we found to decrease the complexity of dynamics and therefore training time.

23

Figure E1: Reconstruction performance of the CaSPR-Atlas and PointFlow baselines compared to
the full CaSPR model. Each row shows a frame from a different 10-step rigid motion sequence.

The PointFlow baseline operates on single already-canonical partial point cloud frames, while
CaSPR and CaSPR-Atlas take in raw world-space sequences of partial point clouds. To reconstruct a
sequence, PointFlow can easily reconstruct the observed (canonical) frames by simply autoencoding
each frame independently. However, to allow reconstruction of intermediate unobserved steps,
we must use linear interpolation in the shape feature space from surrounding observed frames, as
described in the main paper.

Median reconstruction errors are presented in Tab. 2 of the main paper. Mean and standard deviation
are shown here in Tab. E3. Generally, the CaSPR variants have a higher standard deviation than
PointFlow. This is likely because CaSPR methods must canonicalize the input in addition to
reconstructing it, so any errors in this first step may compound in the reconstruction causing some
occasional high errors. A qualitative comparison is shown in Fig. E1. The CaSPR-Atlas baseline has
perhaps deceivingly poor EMD errors. As discussed in the main paper, the patch-based approach
has difficulty reconstructing the true point distribution of the partial view and may cause some areas
to be much more dense or sparse than they should (see chairs in Fig. E1). Because EMD requires
a bijection, these overly dense areas are paired with distant points causing large errors. However,
qualitative and CD results suggest the approach has some advantages: the reconstructed point cloud
tends to be less noisy and capture local detail better than its CNF-based counterparts.

Additional results of the full CaSPR model reconstructing 10-frame input sequences of rigid, partial
point clouds are shown in Fig. E2. Please see the caption for details. Note that the shown T-NOCS
predictions are using TPointNet++ trained jointly within the full CaSPR model rather than individually
as in the “Canonicalization" experiments.

24

(b) Ground Truth - 10 (c) T-NOCS Prediction - 10 (d) CNF Prediction - 10 (e) CNF Prediction - 30

0.00 0.07

(a) Input Sequence - 10

Figure E2: Canonicalization, aggregation, and dense reconstruction of rigid motion sequences by the
full CaSPR model. Each sequence shows (a) the 10 observed raw partial point cloud frames given
as input to CaSPR, (b) the GT partial reconstruction based on the observed frames, (c) the partial
reconstruction achieved by aggregating T-NOCS predictions from TPointNet++ with color mapped
to spatial error, (d) the aggregated prediction after reconstructing the 10 observed frames with the
CNF, and (e) the aggregated prediction when interpolating 30 frames using the CNF.

Rigid Spatiotemporal Interpolation Additional results of the full CaSPR architecture reconstruct-
ing a sparse, partial input sequence are shown in Fig. E3. In each sequence, the model is given 3
frames with 512 points (with GT canonical point cloud shown as Sparse GT) and reconstructs any
number of densely sampled steps (10 are shown as Dense Sampling, each with 2048 points).

Table E4: Pose estimation performance showing mean
and (standard deviation). Supplements Tab. 3 in the
main paper.

Method Category Trans Err Rot Err(◦) Point Err
RPM-Net Cars 0.0071 (0.0102) 2.1677 (10.0952) 0.0087 (0.0146)
CaSPR 0.0116 (0.0245) 4.9597 (22.8311) 0.0203 (0.0645)

RPM-Net Chairs 0.0029 (0.0031) 0.6212 (3.3530) 0.0042 (0.0078)
CaSPR 0.0094 (0.0127) 3.0264 (9.5897) 0.0152 (0.0367)

RPM-Net Airplanes 0.0050 (0.0076) 2.2703 (16.2945) 0.0070 (0.0190)
CaSPR 0.0083 (0.0144) 3.6740 (16.9152) 0.0144 (0.0456)

Rigid Pose Estimation We solve for object
pose in a post-processing step that leverages the
world-canonical correspondences given by the
output of TPointNet++. We use the full TPoint-
Net++ architecture trained as in the “Canoni-
calization" evaluation above. For each frame
independently, we run RANSAC [22] using 4
points to perform the fitting and with an inlier
threshold of 0.015.

25

Figure E3: Examples of spatiotemporal interpolation to reconstruct sparse, partial input sequences.
The sparse GT canonical point cloud for each sequence is shown in the top row; the dense CaSPR
reconstruction using the CNF is shown in the bottom row.

Figure E4: Additional camera pose estimation results. Ground truth trajectories are shown in solid
green and the CaSPR prediction in dashed red.

We compare our approach to a recent method for robust rigid registration called RPM-Net [85]. This
is an algorithm specially designed for pairwise point cloud registration that iteratively estimates the
transformation parameters of possibly-partial point clouds by estimating soft correspondences in the
inferred feature space. Because this method can only operate on pairs of point clouds, during training
we give it the raw partial point cloud (1024 points) along with the corresponding GT canonical
point cloud (1024 points with permuted ordering) as input. This contrasts with TPointNet++ that
only receives the raw partial point cloud at each step, and must predict the canonical point cloud to
establish correspondences. At test-time, we instead use 2048 points for the input point clouds, and the
raw points and GT canonical points are randomly sampled so they are not in perfect correspondence.

Median errors appear in Tab. 3 of the main paper, but mean and standard deviation results are shown
here in Tab. E4. Though TPointNet++ does not outperform RPM-Net on any shape category, the
minimal gap in performance is impressive considering that TPointNet++ has to solve a much harder
task (pose estimation) than RPM-Net, which receives both the world and canonical point clouds as
input and iteratively solves the simpler pairwise registration task. As seen in Fig. E5, the qualitative
difference between the two methods is nearly imperceivable. Additional qualitative camera pose
estimation results from CaSPR are shown in Fig. E4.

26

Figure E5: Rigid pose estimation comparison. Each column shows a frame from a different partial
point cloud sequence. Predicted object pose (red points) is shown compared to the GT depth point
cloud (green points) for each method. Both methods are very accurate.

Non-Rigid Reconstruction and Temporal Correspondences We compare CaSPR to Occupancy
Flow (OFlow) [49] on the task of reconstructing Warping Cars sequences and estimating correspon-
dences over time. Because OFlow uses an implicit occupancy shape representation, this dataset
contains complete shapes with a clearly defined inside and out. The OFlow baseline uses the point
cloud completion version of the model, which leverages a PointNet-ResNet architecture for both the
spatial and temporal encoders. OFlow is trained with the reconstruction loss only (i.e. it does not
explicitly use a correspondence loss). Table E5: Deformable reconstruction and correspondences mean

and (standard deviation). Supplements Tab. 4 in the main paper.

Reconstruction Correspondences
Method CD EMD Dist t1 Dist t10
OFlow 1.764 (0.913) 24.247 (14.74) 0.011 (0.003) 0.032 (0.007)
CaSPR 0.992 (0.256) 12.864 (5.856) 0.014 (0.002) 0.037 (0.009)

Both methods are trained on se-
quences of 10 frames with 512 points,
and tested on sequences of 10 frames
with 2048 points. Due to restrictions
of the OFlow encoder, the points at
each frame in the input sequence are in correspondence over time (note that this is not a requirement
for CaSPR, which can accurately estimate temporal correspondence even if this is not the case as in
most real-world applications) and we must use the same number of timesteps at training and test time.
To reconstruct a sequence with OFlow, we reconstruct the mesh at the first time step based on the
occupancy network predictions, then randomly sample 2048 points on this mesh and advect them
forward in time with the predicted flow field. For CaSPR, we advect the latent feature forward in
time to each desired timestep as per the usual, then reconstruct each frame with the CNF using the
same Gaussian samples at each step to achieve temporal continuity.

Median reconstruction and correspondence errors are reported in Tab. 4 of the main paper. Here
we show the mean and standard deviations in Tab. E5. Reconstruction errors are measured at all 10
observed timesteps by randomly sampling 2048 ground truth points, while correspondence errors are
measured at only the first and last steps using the procedure detailed in the main paper. Additional
qualitative results are shown in Fig. E6.

27

Figure E6: Reconstruction results on Warping Cars data. Each sequence is 10 steps in length and we
show point trajectories over time for (a) the ground truth input sequence, (b) the reconstruction from
Occupancy Flow, (c) the reconstruction at the 10 observed steps with CaSPR, (d) 30 interpolated
steps with CaSPR, and (e) the T-NOCS prediction from TPointNet++.

28

	Introduction
	Related Work
	Background
	Method
	Network Architecture

	Experimental Evaluations
	Evaluations and Applications

	Conclusion
	Discussions
	Additional Evaluations
	Ablation Study
	Sparsity in Space and Time
	Reconstructing Longer Sequences
	Multi-Category Model
	Canonicalizing for Deformation
	Label Propagation through Canonicalization
	Extrapolating Motion

	Datasets Details
	Implementation Details
	Experimental Details and Supplemental Results

