
Learning Generalizable Physical Dynamics of 3D Rigid Objects

Davis Rempe1 Srinath Sridhar1 He Wang1 Leonidas J. Guibas1,2

1Stanford University 2Facebook AI Research

Abstract

Humans have a remarkable ability to predict the effect of
physical interactions on the dynamics of objects. Endowing
machines with this ability would allow important applica-
tions in areas like robotics and autonomous vehicles. In
this work, we focus on predicting the dynamics of 3D rigid
objects, in particular an object’s final resting position and
total rotation when subjected to an impulsive force. Differ-
ent from previous work, our approach is capable of gener-
alizing to unseen object shapes—an important requirement
for real-world applications. To achieve this, we represent
object shape as a 3D point cloud that is used as input to a
neural network, making our approach agnostic to appear-
ance variation. The design of our network is informed by
an understanding of physical laws. We train our model with
data from a physics engine that simulates the dynamics of
a large number of shapes. Experiments show that we can
accurately predict the resting position and total rotation for
unseen object geometries.

1. Introduction

Humans have a fundamental intuitive understanding of
the dynamics of the physical world. Even at a young age,
we are able to understand and predict the effect of physical
interactions with objects [4, 20] (e.g., putting a peg into a
hole, catching a ball). This intuitive knowledge of dynam-
ics allows us to operate in previously unseen environments,
and interact with and manipulate objects encountered for
the first time. Endowing machines with the same ability
would allow new applications in autonomous driving, home
robotics, and augmented reality (AR) scenarios.

The 3D dynamics of objects can be predicted using well-
studied physical laws given precise properties and system
parameters (e.g., mass, moment of inertia, applied force).
In practice however, it is impossible to estimate all system
parameters, especially from non-contact sensory data. Fur-
thermore, simulating the physics of complex environments
requires exact specification of a partially-observed system,
and can be computationally expensive and imprecise.

Inspired by the generalizable ability of humans to intuit

object dynamics, we develop a deep learning approach to
predict the physical dynamics of unseen 3D rigid objects.
Learned dynamics has advantages over traditional simula-
tion as it offers differentiable predictions useful for rein-
forcement learning, and the flexibility to tradeoff speed and
accuracy by varying network capacity. There has recently
been a lot of interest in learning to predict object dynam-
ics, yet, a number of limitations remain. First, prior work
lacks the ability to generalize to shapes that were not seen at
training time [7], limiting real-world applicability. Second,
many methods are limited to 2D objects and environments
[5, 9, 16, 37] and do not generalize well to 3D objects. Fi-
nally, many methods use images as input [27, 26, 13, 3]
which provide only partial shape information and entangle
variations in object appearance with physical motion.

Our goal is to learn to predict the dynamics of 3D rigid
objects and generalize these predictions to previously un-
seen object geometries. To this end, we focus on the prob-
lem of accurately predicting the final rest state (position and
total rotation) of an object (initially stationary on a plane)
that has been subjected to an impulse—a force causing an
instantaneous change in velocity. As a result of this im-
pulse, the object moves along the plane but friction even-
tually brings it to rest (see Figure 1). This problem for-
mulation has surprisingly many nuances. The motion of an
object after an applied impulse depends non-linearly on fac-
tors such as its moment of inertia, amplitude of the force,
and surface friction. Furthermore, sliding objects could
wobble resulting in unpredictable motions. Learning these
subtleties in a generalizable way requires a deep under-
standing of the connection between object shape, mass, and
dynamics. Since this problem formulation is well-defined,
it allows us to better evaluate shape generalization with-
out worrying about other complex dynamics like collisions.
Yet, it still has practical applications, for instance, in robotic
pushing of objects, and is a strong foundation for develop-
ing methods to predict more complex physical dynamics.

To solve this problem, we present a neural network
model that takes the shape of an object and additional infor-
mation about the applied impulse as the input, and predicts
the final rest position and total rotation undergone through-
out the entire motion of the object. Different to previous

work, we use a 3D point cloud to represent the shape of
the object and use features extracted by PointNet [30]. This
makes our method more robust and applicable to the real
world since we decouple object motion from appearance
variation. Furthermore, our network design is informed by
an understanding of real-world physical laws and priors. To
train this network, we simulate the physics of a large num-
ber of household object shapes from the ShapeNet reposi-
tory [8]. Our network learns to extract salient shape features
from these examples. This allows it to make accurate pre-
dictions not just for impulses and object shapes seen during
training, but also for unseen objects in novel shape cate-
gories that are subjected to new impulses.

We present extensive experiments that demonstrate that
our method is capable of learning physical dynamics that
generalize to unseen 3D object shapes. We compare the
performance of our approach with a standard physics engine
as well as other state-of-the-art approaches [28]. We offer
additional insights into the meaningful features learned by
our model and justify our design decisions.

2. Related Work
The problem of learned physical understanding has been

approached in many ways, resulting in multiple formula-
tions and ideas of what it means to understand physics.
Some work answers questions related to physical aspects
of a scene [6, 43, 21, 22, 19, 25], while others learn to in-
fer physical properties of objects from video frames [40, 38,
39] or image and 3D object information [23]. In this section
we focus on describing work most closely related to ours.

Forward Dynamics Prediction: Many methods at-
tempt direct forward prediction of object dynamics. Gen-
erally, these approaches take the current state of objects in a
scene, the state of the environment, and any external forces
as input and predict the state of objects at future times. For-
ward prediction is a desirable approach as it can be used for
action planning [17]. Multiple methods have shown suc-
cess in 2D settings [15]. [16] uses raw visual input centered
around a ball on a table to predict multiple future positions.
The neural physics engine [9] and interaction network [5]
explicitly model relationships in a scene to accurately pre-
dict the outcome of complex interactions like collisions be-
tween balls. [37] builds on [5] by adding a front-end per-
ception module to learn a state representation for objects.
These 2D methods exhibit believable results, but are lim-
ited to simple primitive objects. They also make predictions
for a small number of future frames rather than final rest
state. As a result, they must iteratively roll out predictions
to make observations far into the future, providing detailed
object trajectories at the cost of compounding error.

Dynamics in Images & Videos: Many methods for
3D dynamics prediction operate on RGB images or video
frames [42, 31, 12, 10, 35, 11]. [26] and [27] introduce

multiple algorithms to infer future 3D translations and ve-
locities of objects given a single static RGB image. Some
methods directly predict pixels of future frames conditioned
on actions [29]. [13] infers future video frames involving
robotic pushing conditioned on the parameters of the push
and uses this prediction to plan actions [14]. In a similar
vein, [3] uses video of a robot poking objects to implicitly
predict object motion and perform action planning with the
same robotic arm. Many of these methods focus on real-
world settings, but do not use 3D information and possibly
entangle object appearance with physical properties.

3D Physical Dynamics: Recent work has taken initial
steps towards more general 3D settings [36]. Our method
is most similar to [7] who use a series of depth images to
identify rigid objects and predict point-wise transformations
one step into the future, conditioned on an action. How-
ever, they do not show generalization to unseen objects.
Other work extends ideas introduced in 2D by using vari-
ations of graph networks. [33] decomposes systems con-
taining connected rigid parts into a graph network of bod-
ies and joints to make single-timestep forward predictions.
The hierarchical relation network (HRN) [28] breaks rigid
and deformable objects into a hierarchical graph of particles
to learn particle relationships and dynamics from example
simulations. Forward predictions for each of these particles
result in motion of objects in the scene. Though HRN is ro-
bust to novel objects, it is unclear whether it can generalize
to real-world scenarios due to detailed per-particle supervi-
sion required during training (see Section 6).

3. Problem Formulation
We investigate the problem of predicting the dynamics of

an initially stationary rigid object subjected to an impulse.
We assume the following inputs: (1) the shape of the ob-
ject in the form of a point cloud (O ∈ RN×3), and (2) the
applied impulse vector and its position. We further assume
that the object moves on a plane under standard gravity, the
applied impulse is parallel to the plane at the same height as
the center of mass (see Figure 2), and the friction coefficient
between the plane and the object is constant.

Our goal is to accurately predict the final rest position
(Pf ∈ R2) and the total rotation (θ ∈ R) (about the vertical
axis) of an object subjected to an impulse. Since the ob-
ject could undergo multiple 360◦ rotations before coming
to rest, the total rotation θ is often different from the rigid
rotation. While we parameterize the final object state with 2
translational and 1 rotational parameters, we do not restrict
the object motion to 2D. As shown in Figure 1, the object
is free to move in 3D as long as it does not topple over. We
use a point cloud to encode object geometry since it only
depends on the surface geometry, making it agnostic to ap-
pearance, and can be readily captured in a real-world setting
through commodity depth sensors. Additionally, the ap-

Figure 1. We study the problem of predicting the position Pf and total rotation θ of an object initially resting on a plane subjected to an
impulse J at position r (left). Our method can predict the dynamics of a variety of different shapes (right top) and generalizes to previously
unseen object shapes and impulses. Our problem formulation presents many challenges including the unpredictable 3D motion caused due
to wobbling of objects under motion (right bottom). We are able to accurately predict dynamics even under these conditions.

plied impulse vector and position could be acquired through
the agent executing the action (e.g., a robotic arm).

Instead of solving the highly challenging unconstrained
3D dynamics prediction problem, we choose to specifically
model 3D motion along a plane and predict final rest state
(as opposed to multi-step [28]). Since we predict final state
rather than a sequence, we apply an instantaneous impulse
rather than a time-varying force. We do not allow the object
to roll on its side or to topple over, but 3D wobbling motion
(see Figure 1) causes the amount of contact surface area to
vary resulting in complex trajectories. Unobserved quan-
tities (e.g., mass, volume, moment of inertia, and contact
surface) additionally contribute to the difficulty of this prob-
lem. Learning the dynamics of 3D planar motion has many
benefits. It allows us to work on a well-defined problem and
to focus on gaining insight and evaluating generalization to
unseen object shapes without complex interactions such as
collisions. Furthermore, such a formulation has practical
applications, for instance a robotic arm pushing objects on
a desk to reach a goal state. A solution to this 3D prob-
lem would also be a strong foundation to predicting more
complex dynamics.

What does a network need to learn to accurately predict
final rest state? Assuming constant friction, the final rest
state of an object depends on its initial linear and angular
velocities defined as

v =
J

m
, ω =

r× J

I
, (1)

where v is the linear velocity, J is the applied impulse vec-
tor, m is the object mass, ω is the angular velocity, r is
the impulse position relative to the center of mass, and I is
the moment of inertia. The final position of the object is
proportional to the square of the starting linear velocity—
a straightforward relationship to capture with neural net-
works. However, the final rotation, even in our setup, is
non-linear and depends on factors such as object mass dis-

tribution, friction, and the contact surface area and shape.
Furthermore, out-of-plane motions lead to uneven friction
causing non-linear translation.

4. Data Simulation
We use 3D simulation data from the Bullet physics en-

gine [1] within Unity [2] for our problem, however, our
method in principle could be trained on real-world data pro-
vided ground truth shape (e.g., from a depth sensor), im-
pulse vector (e.g., from a robotic arm), and translation and
total rotation (e.g., from visual tracking) is available.

A single datapoint in our datasets is a unique simulation
run in which an object is placed at rest on a flat plane and
then a random impulsive force is applied to the surface of
the object in a direction parallel to the ground plane. As a
result, the object moves and eventually comes to rest at its
final position and total rotation. For each simulation, we
record the point cloud shape of the object, the magnitude,
direction and position of the applied impulse, and the final
object resting position and total rotation.

Simulation Procedure: For our input, we sample a
point cloud with 1024 points from the surface of each
unique object in all datasets (see Figure 2). The applied
impulse direction, magnitude, and position are chosen ran-
domly from a uniform distribution. We hold the ground and
object friction values and object density constant across all
simulations. During simulation, we use the exact mesh to
build a collider that captures the object geometry complex-
ity to simulate motion and contact with the ground plane.
We ensure that simulated objects do not fall over, however
motion is not explicitly constrained in any way. Simulated
objects range from 0.15 to 20 kg in mass, typically travel
between 0.5 and 5 meters, and can rotate from 0◦ to more
than 2000◦ (5–6 complete rotations).

Datasets: We synthesized multiple categories of
datasets to train and evaluate our models. These separate

Figure 2. Problem input and impulse coordinates. Our method
uses point clouds (red spheres) of object shapes, the impulse vector
J (black arrow), and the impulse position (red circle) to learn and
predict dynamics. The object is initially at rest on a plane. We use
impulse coordinates, aligned with the direction of the impulse, to
represent the input to our model.

datasets contain different sets of objects and are summa-
rized in Figure 3. Each dataset is split into training (80%)
and test sets (20%). Training objects are simulated with
a different random scale from 0.5 to 1.5 for x, y, and z
directions in order to increase shape diversity. There are
two primitive object datasets used for evaluating on rela-
tively low shape diversity. The Box dataset is a single cube,
whereas the Cylinders set contains a variety of cylin-
der shapes. There are four datasets which contain every-
day objects taken from the ShapeNet [8] dataset. These ex-
hibit wide shape diversity and offer a more challenging task.
Lastly, we have a dataset which combines all of the objects
from the previous six to create a large and extremely di-
verse set of shapes. This Combined dataset is split roughly
evenly between shape categories (around 7000–10000 sim-
ulations per category). In total, we use 793 distinct object
shapes and ran 98826 simulations to generate our data.

Pre-processing: Outlier simulations where the object
translated more than 7 meters or rotated more than 3000◦

are removed. We also transform all data to a coordinate
system where the x-axis is aligned with the direction of the
applied impulse—we refer to these as impulse coordinates
(see Figure 2). Motion will be most prominent along the
direction of the impulse, thus using impulse coordinates al-
lows our network to better learn object dynamics.

5. Method

To predict final rest position and total rotation after an
impulse, we use a neural network trained on simulated data.

5.1. Network Architecture

A straightforward approach may combine all inputs into
one vector and use a multi-layer neural network to directly
regress the final state. As we show in Section 6, this naı̈ve

Figure 3. Data distribution. We generated our data using 6 cate-
gories of shapes both from ShapeNet and primitive shapes (Box
and Cylinders are combined into Primitives). For each
shape category, we ran thousands of simulations. In total, we use
793 unique object shapes and ran 98826 simulations.

approach cannot learn the intricacies of the non-linear mo-
tion of the object before it comes to rest. We take a more
principled approach and inform the design of our network
based on our understanding of physical laws and priors.

From Equation 1, we observe that the linear and angu-
lar velocities depend on: (1) the applied impulse magni-
tude, direction, position, and its angular impulse (r × J),
and (2) the shape of the object which affects its mass m and
moment of inertia I . We therefore base our network design
on learning important information related to the applied im-
pulse and shape of the object. Our network (see Figure 4) is
composed of two main branches whose output features are
jointly used to make a final position and rotation prediction.

Impulse Processing: The top branch in our network
is the impulse processing branch which takes the applied
impulse, its position, and 4 pairwise terms as input, and
outputs an impulse feature. The 4 pairwise terms are the
products of the components of the impulse with those of the
impulse position r. The aim of this branch is to learn the
effect of the impulse and the angular impulse on the motion
of the object. Since the impulse is parallel to the ground, we
only provide the 2D impulse vector and its position relative
to the center of mass. We observe that the angular impulse
is a cross product (r × J) which could be difficult to learn.
We encourage the network to learn this relationship by pro-
viding the pairwise product between r and J.

Shape Processing: The bottom shape processing branch
is designed to extract salient shape features that are cru-
cial to making accurate predictions. As seen in Equation 1,
object geometry affects both linear and angular velocities
through its mass (which depends on volume) and moment
of inertia about the vertical axis. The aim of this branch is
to help the network develop notions of volume, mass, and
inertia from a point cloud representation. It must also learn
the effect of the area and shape of the bottom contacting
surface which determines how friction affects total rotation.

Figure 4. Model architecture. Our network takes the impulse, its position, additional pairwise terms, and the object point cloud as input and
predicts the final resting position and total rotation that the object undergoes. Since the object’s initial and final position are on the plane,
we use only 2 translation and 1 rotation parameters. Numbers in bracket indicate the output size of each layer, + sign is concatenation,
MLP indicates multilayer perceptron, and FC indicates a fully-connected layer. Optional branches are shown in dashed boxes.

To effectively learn this, we use PointNet [30]. As shown in
Figure 4, the initial object point cloud is fed to the PointNet
classification network which outputs a global feature that is
further processed to output our final shape feature. We use
batch normalization following every layer in the network
besides the final output layer.

Prediction: After concatenating the impulse and shape
features, we jointly predict final position and total rotation
with a 6-layer multilayer perceptron (MLP). Position is a
2×1 vector and rotation a 1×1 vector since the object rests
on the plane in its final state. Because rotation affects fi-
nal position, jointly predicting them with the same network
provides improved performance.

Optional Branches: We add two optional branches
(dashed boxes in Figure 4) that are only used to investigate
if our network learns notions of mass, moment of inertia,
and linear and angular velocities (see Section 6). Each op-
tional branch is a single fully-connected layer. The first
branch takes a feature from the shape processing branch
to predict the mass and moment of inertia from the point
cloud. The second predicts initial linear and angular veloc-
ities from a feature in the final prediction MLP.

5.2. Loss Functions & Training

The goal of the network is to minimize the error be-
tween the predicted and ground truth position and rotation.
We found that using an L2 loss for translation and rota-
tion caused the network to focus too much on examples
with large error due to their large translation and total ro-
tation. Instead we propose to use a form of relative error:
for translation we penalize the relative distance between the
predicted final position P̂f and ground truth Pf , and for ro-
tation we use a relative L1 error between the predicted total
rotation θ̂ and the ground truth θ. We sum the values in

the denominator of the rotation loss Lθ to avoid exploding
losses when ground truth rotation is near zero:

Lp =
‖Pf − P̂f‖
‖Pf‖

, Lθ =
|θ̂ − θ|
|θ̂|+ |θ|

. (2)

Our final loss is the sum of the two L = Lp + Lθ.
We train all branches of our network jointly using the

Adam [18] optimization algorithm with a starting learning
rate of 0.005 which is exponentially decayed to 1 × 10−5

during training. In the shape processing branch, PointNet
weights are pretrained on ModelNet40 [41], then fine-tuned
during our training process. We train the network for 200
epochs with a batch size of 128 on a single NVIDIA Titan
X GPU. Before training, 20% of the objects in the training
split are set aside as validation data. During training, eval-
uation is performed on the validation set every 5 epochs.
The model weights which result in the lowest validation loss
throughout training are used as the final model. In total, our
network architecture has about 2.8 million parameters.

6. Experiments

In this section, we present extensive experiments and
evaluation on the generalization capability of our approach,
justify design choices through ablation studies, and present
comparison to baselines as well as previous work.

Evaluation Metrics: For all experiments, we report
mean relative and absolute errors for position and total ro-
tation. Since absolute errors increase for large motions
and datasets have different distributions, relative error is
the better indicator of model performance making different
datasets comparable. For position, we use the same relative
error used for the loss (Equation 2). For rotation, we report

ImpulseGen, Single ImpulseGen, Combined ObjGen, Single ObjGen, Combined ObjGen, Leave-One-Out

Dataset Position Rotation Position Rotation Position Rotation Position Rotation Position Rotation

Box 2.8 (4.5) 10.9 (8.7) 4.5 (8.1) 9.3 (7.1) 2.8 (4.5) 10.9 (8.7) 3.3 (5.0) 9.3 (7.2) 4.1 (6.6) 11.1 (7.9)
Cylinders 5.4 (10.0) 12.2 (50.5) 6.4 (12.0) 16.2 (56.8) 5.9 (11.0) 11.5 (48.5) 6.4 (11.9) 17.7 (75.7) 8.5 (14.9) 17.7 (72.1)
Mugs 3.6 (6.4) 7.2 (11.2) 4.2 (7.1) 8.9 (14.8) 11.8 (20.2) 10.7 (16.9) 8.1 (14.1) 10.8 (15.6) 8.9 (15.8) 13.5 (21.9)
Trashcans 3.9 (6.7) 9.2 (12.6) 4.7 (8.5) 9.6 (13.7) 6.4 (11.4) 11.0 (15.1) 6.2 (11.1) 13.0 (19.4) 5.6 (10.0) 12.9 (16.0)
Bottles 3.3 (6.2) 5.6 (21.5) 6.2 (11.1) 12.7 (42.6) 10.2 (19.1) 14.7 (72.0) 9.3 (16.9) 15.6 (62.1) 17.4 (28.3) 24.0 (81.7)
Speakers 10.0 (21.6) 14.6 (63.5) 9.1 (20.0) 11.4 (47.5) 11.3 (24.9) 13.3 (51.9) 8.9 (19.4) 11.4 (43.4) 42.7 (86.1) 160.5 (586.1)
Combined - - 6.2 (11.9) 11.8 (34.4) - - 6.9 (13.0) 13.2 (39.5) - -

Table 1. Results for impulse generalization (ImpulseGen) and object generalization (ObjGen) experiments. For position, mean relative %
error (and absolute centimeter error in parentheses) is reported. For rotation, mean relative % error (and absolute degree error) is
shown. Single indicates a different model trained for each shape category, Combined indicates a single model trained on the Combined
dataset, and Leave-One-Out indicates models trained on the Combined dataset with the evaluated category left out.

a binned relative error

ηθ =
|θ̂ − θ|/b
d|θ|/be

. (3)

θ is the ground truth total rotation and θ̂ is the prediction.
For all results we use a bin of b = 30◦. This metric prevents
relative rotation error from exploding when ground truth ro-
tation is near zero but still penalizes poor predictions.

6.1. Impulse Generalization

We first perform impulse generalization (ImpulseGen)
experiments to evaluate our model’s robustness to new im-
pulsive forces applied to known objects—an important ca-
pability that helps generalize to novel settings and has been
demonstrated in previous work [7]. For these experiments,
train and test sets contain the same objects but with different
simulations. Model performance is tested after training on
both single object categories and across multiple categories.

Single Category: A separate model is trained for each
distinct object category. The second and third columns of
Table 1 show the mean relative percent errors (absolute er-
rors are in brackets) for position and total rotation of the
six trained single-category models. As previously hypoth-
esized, the network has a harder time predicting total rota-
tion than position resulting in higher errors. However, hav-
ing seen all objects during training, these models make ex-
tremely accurate predictions on novel impulse forces.

Combined Categories: A single model is trained on
the Combined dataset which contains all object categories.
We evaluate this model on both the Combined dataset and
individual datasets so that performance can be compared
to single-category trained models. As shown in columns
four and five of Table 1, the combined model performs only
slightly worse on the individual category datasets compared
to single-category training. This suggests the network has
effectively learned how varying the force affects angular im-
pulse, and linear and angular velocities in order to perform
well on such a wide range of objects.

6.2. Object Generalization

We next perform object generalization (ObjGen) exper-
iments to evaluate whether the learned model is able to
apply accurate dynamics predictions to unseen objects—a
crucial ability for autonomous systems in unseen environ-
ments. Since it is impossible to experience all objects that
an agent will interact with, we would like knowledge of
similarly-shaped objects to inform reasonable predictions
about dynamics in new settings. For these experiments, we
split datasets based on unique objects such that no test ob-
jects are seen during training. Furthermore, the impulses
applied for test objects are disjoint from the training objects
similar to the ImpulseGen experiments. Since our network
is designed specifically to process object shape and learn
relevant physical properties, we expect it to extract general
features allowing for accurate predictions even on novel ob-
jects. Similar to the ImpulseGen experiment, we evaluate
models trained on both single and combined categories.

Single Category: Results for testing data when a sep-
arate network is trained for each category are shown in Ta-
ble 1 under the blue heading. As expected, the error is
slightly higher but still within 5% of the ImpulseGen single-
category results in most cases. This indicates that the net-
work is able to generalize to unseen objects within the same
shape category. The blue curves in Figure 5 summarize
single-category performance over entire test sets. For po-
sition, around 90% of predictions for all object categories
fall under 20% relative error, while for rotation this number
falls closer to 80-85% especially for the larger and more
diverse Bottles and Speakers datasets.

Combined Categories: Performance of the model
when trained on the Combined dataset and then evaluated
on all individual datasets is shown under the orange head-
ing in Table 1. In general, performance is very similar to
training on individual datasets and even improves errors in
some cases, for example position predictions for Bottles,
Mugs, and Speakers. This indicates that exposing the
network to larger shape diversity at training time can help
focus learning on underlying physical relationships rather

Figure 5. Comparison of performance training on single object categories (blue), the full Combined dataset (orange), and Combined
dataset with the evaluated category left out (green). Curves show cumulative fraction of test examples under a certain relative error.

than properties of single or small groups of objects. Im-
provements and drops in performance are indicated by the
blue and orange curves plotted in Figure 5. In order to main-
tain this high performance, the network is likely learning a
general approach to extract salient physical features from
the diverse objects in the Combined dataset rather than
just memorizing how specific shapes behave.

Physical Understanding: To explore the implicit fea-
ture space of our learned model, we conduct two experi-
ments that require additional supervised outputs from the
network on top of position and total rotation (modifications
detailed in dashed boxes in Figure 4). In the first experi-
ment, we output the mass and moment of inertia of the ob-
ject using a feature from the shape processing branch. Af-
ter training on the combined dataset, the network achieves
8.7% and 3.5% relative errors for moment of inertia and
mass, respectively, without degrading performance on the
main objective. In the second experiment, we supervise ini-
tial linear and angular velocity from a feature in the final
prediction branch and are able to achieve 3.5% and 5.8%
relative error, respectively, without affecting the main task.
Since there is no significant change in network performance
on final state prediction, we conclude that the model has al-
ready developed implicit notions of these physical proper-
ties, resulting in minimal change to its learned feature space
when additional supervised objectives are added.

Out of Category: Lastly, we evaluate performance on
the extreme task of generalizing outside of trained object
categories. For this, we create new combined datasets each
with one object category left out of the training set. We
then evaluate its performance on objects from the left out
category. Results for these experiments are shown under
the green heading in Table 1 and by the green curves in
Figure 5. The network is able to achieve good results on all
left-out object categories except for Speakers. As seen in
Figure 3, Speakers contributes the most unique objects to
the Combined dataset by far; without them, the network

may not see enough diversity in training to perform well.
Overall, this result shows that we can still make accurate
predictions for objects from completely different categories
in spite of their shape not being close to the trained objects.
The model seems to have developed a deep understanding
of how shape affects dynamics through mass, moment of
inertia, and contact surface in order to generalize to novel
categories at test time. Some predictions from leave-one-
out trained models are visualized in Figure B.2.

6.3. Ablation Study

We compare our proposed architecture to a number of
ablations and modifications to justify design decisions. A
performance comparison of all model variants is shown in
Figure 7. Every model is trained and evaluated on the
Combined dataset split by unique objects. The first two
ablations justify some physically-informed design choices.
The no pairwise products (NPP) model removes the input
augmentation of pairwise terms from the impulse process-
ing branch, while the no impulse coordinates (NIC) model
uses data that does not use impulse coordinates. The next
two models justify our use of PointNet for feature extraction
and 3D point clouds as input. In the first model, we replace
the PointNet module in the shape processing branch with
a feed-forward network (NP-MLP). The second (NP-VGG)
shows the advantage of using 3D data to provide shape in-
formation instead of images by replacing PointNet with the
convolutional layers of VGG-16 [34]. This version of the
network is trained with images of the objects in each sim-
ulation, and performs significantly worse than using point
cloud data. This indicates that learning to understand subtle
shape variation is imperative to making accurate dynamics
predictions for 3D objects. The last model is a straightfor-
ward baseline MLP that takes in all input data concatenated
together to make position and rotation predictions. The poor
performance of this network highlights the advantage of us-
ing a branched structure.

Figure 6. Sample predictions from models trained on the Combined dataset with one category left out. Initial object state is shown in
shaded grey, ground truth final state is in transparent grey, and network prediction is in transparent red. Relative errors are shown. From
left to right the second row shows best performance (green), average performance (orange), and Speakers failure cases (red).

Figure 7. Comparison of architecture variants trained and evalu-
ated on the object generalization Combined dataset. Curves show
cumulative fraction of test examples under a certain relative error.
Dashed lines indicate the mean relative error. The proposed archi-
tecture (Ours) is shown in blue.

6.4. Comparison to Other Work

We compare our method to the hierarchical relation net-
work (HRN) [28] to highlight the differences between final
rest state (our work) and their multi-step predictions. Both
models are trained on a small dataset of 1519 scaled boxes
simulated in the NVIDIA FleX engine [24], then evaluated
on 160 held out simulations. Since HRN makes predictions
for the next time step, to infer final rest state the model must
roll out over roughly 20 steps for each simulation. Our
model averages 6.8% and 11.4% relative error for posi-
tion and rotation, respectively, while HRN achieves 12.2%
and 58.0%. It is clear that directly predicting final state al-
lows for more accurate long-term observations, especially
for complex rotation motion. However, HRN predicts a de-
tailed trajectory of object motion at 10 Hz which we cannot.

7. Limitations and Future Work

Our approach has many limitations and there remains
room for future exploration. In this work, we took a dif-
ferent approach to previous work by predicting the final
state of a 3D rigid object instead of multi-step predictions.
We believe that future work should consider closing the
loop by predicting both the final state as well as multiple
intermediate states. Our method is fully supervised and
does not explicitly model physical laws like some previ-
ous work [35]—we plan to explore this in future work. We
show our results on purely synthetic data with no noise and
assume that a complete point cloud of an object is available
which may not be the case with real-world depth sensing.
We ignore the physical parameter estimation problem and
assume constant friction and density. We also ignore free
3D dynamics and complex phenomena such as collisions
which are important directions for future work. We believe
that our approach provides a strong foundation for develop-
ing methods for these complex motions.

8. Conclusion

We presented a method for learning to predict the posi-
tion and total rotation of a 3D rigid object subjected to an
impulse and moving along a plane. Our method is capa-
ble of generalizing to previously unseen object shapes and
new impulses not seen during training. We showed that this
challenging dynamics prediction problem can be solved us-
ing a neural network architecture inspired by physical laws
and priors. We train our network on 3D point clouds of a
large shape collection and a large synthetic dataset with ex-
periments showing that we are able to accurately predict the
final state of 3D rigid objects with complex dynamics.

Acknowledgements: This work was supported by
a grant from the Toyota-Stanford Center for AI Re-
search, NSF grant IIS-1763268, and a Vannevar Bush
Faculty Fellowship. We would also like to thank
Amazon for kindly donating AWS credits for this
project.

References
[1] Bullet physics engine. https://pybullet.org. 3
[2] Unity game engine. https://unity3d.com. 3
[3] P. Agrawal, A. Nair, P. Abbeel, J. Malik, and S. Levine.

Learning to poke by poking: Experiential learning of intu-
itive physics. In Proceedings of the 30th Conference on Neu-
ral Information Processing Systems (NIPS), 2016. 1, 2

[4] R. Baillargeon and S. Hanko-Summers. Is the top object
adequately supported by the bottom object? young infants’
understanding of support relations. Cognitive Development,
5(1):29–53, 1990. 1

[5] P. Battaglia, R. Pascanu, M. Lai, D. J. Rezende, and
K. kavukcuoglu. Interaction networks for learning about
objects, relations and physics. In Proceedings of the 30th
International Conference on Neural Information Processing
Systems (NIPS), pages 4509–4517, 2016. 1, 2

[6] P. W. Battaglia, J. B. Hamrick, and J. B. Tenenbaum. Simula-
tion as an engine of physical scene understanding. Proceed-
ings of the National Academy of Sciences, 110(45):18327–
18332, 2013. 2

[7] A. Byravan and D. Fox. Se3-nets: Learning rigid body mo-
tion using deep neural networks. In 2017 IEEE International
Conference on Robotics and Automation (ICRA), 2017. 1, 2,
6

[8] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan,
Q. Huang, Z. Li, S. Savarese, M. Savva, S. Song, H. Su,
et al. Shapenet: An information-rich 3d model repository.
arXiv preprint arXiv:1512.03012, 2015. 2, 4

[9] M. B. Chang, T. Ullman, A. Torralba, and J. B. Tenenbaum.
A compositional object-based approach to learning physical
dynamics. In Proceedings of the 5th International Confer-
ence on Learning Representations (ICLR), 2017. 1, 2

[10] S. Ehrhardt, A. Monszpart, N. J. Mitra, and A. Vedaldi.
Learning A Physical Long-term Predictor. arXiv preprint,
arXiv:1703.00247, Mar. 2017. 2

[11] S. Ehrhardt, A. Monszpart, N. J. Mitra, and A. Vedaldi. Un-
supervised intuitive physics from visual observations. arXiv
preprint, arXiv:1805.05086, 2018. 2

[12] S. Ehrhardt, A. Monszpart, A. Vedaldi, and N. J. Mitra.
Learning to Represent Mechanics via Long-term Extrapo-
lation and Interpolation. arXiv preprint arXiv:1706.02179,
June 2017. 2

[13] C. Finn, I. Goodfellow, and S. Levine. Unsupervised learn-
ing for physical interaction through video prediction. In Pro-
ceedings of the 30th International Conference on Neural In-
formation Processing Systems (NIPS), pages 64–72, 2016. 1,
2

[14] C. Finn and S. Levine. Deep visual foresight for planning
robot motion. In International Conference on Robotics and
Automation (ICRA), 2017. 2

[15] M. Fraccaro, S. Kamronn, U. Paquet, and O. Winther. A
disentangled recognition and nonlinear dynamics model for
unsupervised learning. In Advances in Neural Information
Processing Systems (NIPS), 2017. 2

[16] K. Fragkiadaki, P. Agrawal, S. Levine, and J. Malik. Learn-
ing visual predictive models of physics for playing bil-
liards. In Proceedings of the 4th International Conference
on Learning Representations (ICLR), 2016. 1, 2

[17] J. B. Hamrick, R. Pascanu, O. Vinyals, A. Ballard, N. Heess,
and P. Battaglia. Imagination-based decision making with
physical models in deep neural networks. In Advances
in Neural Information Processing Systems (NIPS), Intuitive
Physics Workshop, 2016. 2

[18] D. P. Kingma and J. Ba. Adam: A method for stochastic
optimization. In International Conference for Learning Rep-
resentations (ICLR), 2015. 5

[19] A. Lerer, S. Gross, and R. Fergus. Learning physical in-
tuition of block towers by example. In Proceedings of the
33rd International Conference on International Conference
on Machine Learning (ICML), pages 430–438, 2016. 2

[20] A. M. Leslie. The perception of causality in infants. Percep-
tion, 11(2):173–186, 1982. 1

[21] W. Li, S. Azimi, A. Leonardis, and M. Fritz. To fall or not to
fall: A visual approach to physical stability prediction. arXiv
preprint, arXiv:1604.00066, 2016. 2

[22] W. Li, A. Leonardis, and M. Fritz. Visual stability prediction
for robotic manipulation. In 2017 IEEE International Con-
ference on Robotics and Automation (ICRA), pages 2606–
2613, May 2017. 2

[23] Z. Liu, W. T. Freeman, J. B. Tenenbaum, and J. Wu. Physical
primitive decomposition. In Proceedings of the 15th Euro-
pean Conference on Computer Vision (ECCV), 2018. 2

[24] M. Macklin, M. Müller, N. Chentanez, and T.-Y. Kim. Uni-
fied particle physics for real-time applications. ACM Trans-
actions on Graphics (TOG), 33(4):153, 2014. 8

[25] M. Mirza, A. Courville, and Y. Bengio. Generalizable
Features From Unsupervised Learning. arXiv preprint,
arXiv:1612.03809, 2016. 2

[26] R. Mottaghi, H. Bagherinezhad, M. Rastegari, and
A. Farhadi. Newtonian image understanding: Unfolding the
dynamics of objects in static images. In Proc. Computer Vi-
sion and Pattern Recognition (CVPR), 2016. 1, 2

[27] R. Mottaghi, M. Rastegari, A. Gupta, and A. Farhadi. “what
happens if...” learning to predict the effect of forces in im-
ages. In Proceedings the 14th European Conference on Com-
puter Vision (ECCV), 2016. 1, 2

[28] D. Mrowca, C. Zhuang, E. Wang, N. Haber, L. Fei-Fei, J. B.
Tenenbaum, and D. L. K. Yamins. Flexible neural repre-
sentation for physics prediction. In Proceedings of the 32nd
International Conference on Neural Information Processing
Systems (NIPS), 2018. 2, 3, 8

[29] J. Oh, X. Guo, H. Lee, R. L. Lewis, and S. P. Singh. Action-
conditional video prediction using deep networks in atari
games. In Advances in Neural Information Processing Sys-
tems (NIPS), 2015. 2

[30] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep
learning on point sets for 3d classification and segmentation.

https://pybullet.org
https://unity3d.com

Proc. Computer Vision and Pattern Recognition (CVPR),
IEEE, 1(2):4, 2017. 2, 5

[31] R. Riochet, M. Y. Castro, M. Bernard, A. Lerer, R. Fergus,
V. Izard, and E. Dupoux. Intphys: A framework and bench-
mark for visual intuitive physics reasoning. arXiv preprint,
arXiv:1803.07616, 2018. 2

[32] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual
Recognition Challenge. International Journal of Computer
Vision (IJCV), 115(3):211–252, 2015. 10

[33] A. Sanchez-Gonzalez, N. Heess, J. T. Springenberg,
J. Merel, M. Riedmiller, R. Hadsell, and P. Battaglia. Graph
networks as learnable physics engines for inference and con-
trol. In Proceedings the 35th International Conference on
Machine Learning (ICML), 2018. 2

[34] K. Simonyan and A. Zisserman. Very deep convolu-
tional networks for large-scale image recognition. CoRR,
abs/1409.1556, 2014. 7, 10

[35] R. Stewart and S. Ermon. Label-free supervision of neural
networks with physics and domain knowledge. In Proc. of
AAAI Conference on Artificial Intelligence, 2017. 2, 8

[36] Z. Wang, S. Rosa, B. Yang, S. Wang, N. Trigoni, and
A. Markham. 3d-physnet: Learning the intuitive physics
of non-rigid object deformations. In Proceedings of the
26th International Joint Conference on Artificial Intelli-
gence, IJCAI-18, pages 4958–4964, 2018. 2

[37] N. Watters, A. Tacchetti, T. Weber, R. Pascanu, P. Battaglia,
and D. Zoran. Visual interaction networks. arXiv preprint,
arXiv:1706.01433, 2017. 1, 2

[38] J. Wu, J. J. Lim, H. Zhang, J. B. Tenenbaum, and W. T. Free-
man. Physics 101: Learning physical object properties from
unlabeled videos. In Proceedings of the 27th British Machine
Vision Conference (BMVC), 2016. 2

[39] J. Wu, E. Lu, P. Kohli, W. T. Freeman, and J. B. Tenenbaum.
Learning to see physics via visual de-animation. In Proceed-
ings of the 31st Conference on Neural Information Process-
ing Systems (NIPS), 2017. 2

[40] J. Wu, I. Yildirim, J. J. Lim, W. T. Freeman, and J. B. Tenen-
baum. Galileo: Perceiving physical object properties by in-
tegrating a physics engine with deep learning. In Proceed-
ings of the 29th Conference on Neural Information Process-
ing Systems (NIPS), pages 127–135, 2015. 2

[41] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and
J. Xiao. 3d shapenets: A deep representation for volumet-
ric shapes. In Computer Vision and Pattern Recognition
(CVPR), 2015. 5

[42] T. Ye, X. Wang, J. Davidson, and A. Gupta. Interpretable
intuitive physics model. In Proceedings the 15th Euro-
pean Conference on Computer Vision (ECCV), pages 89–
105, 2018. 2

[43] R. Zhang, J. Wu, C. Zhang, W. T. Freeman, and J. B. Tenen-
baum. A comparative evaluation of approximate probabilis-
tic simulation and deep neural networks as accounts of hu-
man physical scene understanding. In Annual Meeting of the
Cognitive Science Society, 2016. 2

A. Appendix: Implementation Details
Here we provide additional details of our simulation

pipeline and baseline implementations.
Simulation Procedure: The simulation pipeline is in-

troduced in Section 4 of the main paper. Prior to simulation,
some pre-computation is done on object shapes to extract
accurate physical parameters, namely the mass and moment
of inertia. To calculate these values, we voxelize each shape
using a grid with a cell side length of 2.5 cm. From this we
approximate the volume of the object which can be used to
calculate the mass given density. Additionally, we compute
a discretized approximation of the moment of inertia about
the shape’s principle axes. These calculated mass and mo-
ment of inertia values are used directly to parameterize the
simulated rigid bodies within the the Bullet physics engine.
Calculating physical parameters in this way ensures con-
sistency across all simulated shapes rather than relying on
the physics engine to calculate them using a mesh collider
which can be extremely inconsistent and inaccurate.

For each performed simulation, the amplitude of the ran-
domly applied impulse is scaled by the object mass to en-
sure similar distributions for small and large objects alike.
When choosing the impulse to apply, we also ensure that the
line defined by the impulse vector and its position passes
within a certain radius of the object’s center of mass. Con-
straining the impulse in this way gives control over the
amount of rotation the object will undergo, allowing for a
reasonable distribution. For Speakers this radius is 40
cm because these objects tend to have a large moment of in-
ertia about the vertical axis. For all other object categories
this radius is set to 10 cm. Simulated objects have a fric-
tion coefficient of 0.7 in the Bullet physics engine while the
ground plane has a coefficient of 0.1.

For each object, we also sample a point cloud from the
surface to use as input to our model. To ensure uniform
sampling, we first oversample (by a factor of 3) the mesh
surface area. We then sub-sample these points using fur-
thest point sampling to obtain our final 1024 points.

Baselines: We now detail implementations for the base-
lines presented in Section 6.3 of the main text. For the no
PointNet MLP (NP-MLP) baseline, we replace the PointNet
module with a small MLP made up of 2 fully-connected
(FC) layers each with 512 nodes. This is followed by the
usual shape processing branch.

For the no PointNet VGG (NP-VGG) baseline, we re-
place the PointNet module with a modified version of VGG-
16 [34]. We use all convolutional layers from VGG (up
through the 5th max pooling layer), but modify the final
2 FC layers to each have 1024 nodes. We initialize the
weights of the convolutional layers from a model pretrained
on ImageNet [32]. During training, we fine tune the weights
for our problem. The input to NP-VGG is a single 112×112
image of the simulated object rather than a point cloud (see

Figure A.1. Examples of object images used as input to the NP-
VGG baseline model.

Figure A.1). In these images, the object is placed against
a plain black background and the camera is positioned in
line with the applied impulse (offset in the -x direction in
the impulse coordinate system described in Section 4 of the
main paper).

The basic MLP baseline flattens the point cloud input
and concatenates it to all other inputs to process this whole
vector with a series of FC layers: 512x3 (3 layers with out-
put size 512), 256x3, 128x2, 64x1, 32x1, and then the final
output of 3 (2 position and 1 total rotation). The poor perfor-
mance of this baseline is likely due to the lack of a branched
structure which overwhelms the network with point cloud
information making it difficult to pick out the important im-
pulse input.

B. Appendix: Additional Results
In this section we provide some additional results to

those presented in Section 6 of the main paper.
Impulse Generalization: Figure B.1 summarizes the

performance of our method evaluated on novel impulse
forces applied to known objects (the ImpulseGen exper-
iments presented in the main paper). These curves plot
the fraction of test examples (y-axis) for which model pre-
dictions fall under a certain relative error threshold (x-
axis). The blue curves indicate models that were trained
on datasets of individual objects categories (six different
models, one for each column). The orange curves show
performance of a single model trained on the Combined
dataset then evaluated on each individual category sepa-

rately. In some cases (Box and Speakers rotation), the
combined training offers improved performance, while in
others (Bottles) the model seems to benefit from train-
ing on individual categories.

Out of Category Object Generalization: Additional
visualizations for the out-of-category generalization experi-
ments are shown in Figure B.2. For each of these examples,
the model was trained on the Combined dataset with the
evaluated object category left out. Some failure cases are
presented in Figure B.3.

Comparison to Baselines: Figure B.4 compares results
from our out-of-category trained model to that of two base-
lines presented in the main text—the no PointNet MLP (NP-
MLP) and VGG (NP-VGG) models. Note that our model
was trained on the Combined dataset with the evaluated
category left out, while the two baseline methods were
trained on the full Combined dataset split by objects. Each
row shows predictions for each model on the same simula-
tion. We see that our proposed method provides more accu-
rate predictions than both of these baselines even though it
did not see the test object category at training time.

Figure B.1. Comparison of performance training on single object categories (blue) and the full Combined dataset (orange) for impulse
generalization experiments. Curves show the cumulative fraction of test examples under a certain relative error.

Figure B.2. Sample predictions for our model trained on the Combined dataset with one category left out. Initial object state is shown in
shaded grey, ground truth final state is in transparent grey, and network prediction is in transparent red. Relative errors are shown.

Figure B.3. Sample failure cases for our model trained on the Combined dataset with one category left out. Initial object state is shown
in shaded grey, ground truth final state is in transparent grey, and network prediction is in transparent red. Relative errors are shown.

Figure B.4. Sample predictions from our model trained on the Combined dataset with one category left out, the NP-MLP baseline trained
on the full Combined dataset, and the NP-VGG baseline trained on the full Combined dataset. Initial object state is shown in shaded
grey, ground truth final state is in transparent grey, and network prediction is in transparent red. Relative errors are shown. Each row shows
a single simulation example.

