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S.1 Overview

In this supplementary, we provide additional details about our training (Sec. S.2)
and inference setups (Sec. S.3), and details of our evaluation metrics (Sec. S.4).
We provide an extended qualitative comparison of our method to the Image2Surf
baseline (Sec. S.5), ablations (Sec. S.6) and for visible surface generation on
real-world data (Sec. S.7). We show additional qualitative results for hidden
surface generation (Sec. S.9) and also provide more visual results for Pix2Surf
(Sec. S.8) and more qualitative comparison to Pixel2Mesh++[3] and AtlasNet[1]
(Sec. S.10).

S.2 Training Details

For the Single-View case, we train our network in two phases. In the first
phase, we train the NOCS-UV branch with a learning rate of 1e−4, using the
NOCS Map and the object mask as supervision. In the second phase, we add the
remaining SP branch and train end-to-end until convergence, with a learning rate
of 1e−4 for cars and 3e−5 for planes and chairs, and using the losses described
in Sec. 4.1 in the paper.

For the Multi-View case, we have found that pre-training with the single-
view architecture, before switching to the full multi-view architecture results in
better initialization. For this purpose, we start by passing the feature zm, directly
to the SP branch without max-pooling multiple views. After pre-training, we
switch to the multi-view architecture as described in Sec. 4.2 in the paper, by
max-pooling the zm features of all views, and concatenating both this max-pooled
multi-view feature, and the single-view feature zm for the current view as input
to the MLP. To better fuse multi-view information for learned chart prediction,
the feature map in the middle of CNN encoder and decoder also follows above
fusion operation. We randomly pick 5 views as input during multi-view training.
For our multi-view consistency loss, we need to identify corresponding pixels in
different views. We sample pixels in each view as in the single-view case and find
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corresponding pixels based on their distance in NOCS coordinates. Two pixels
are in correspondence if their NOCS distance is less than 1e−3.

We separately train on each object category of our dataset.

S.3 Inference Details

One significant advantage of our explicit continuous parametric surface predic-
tion is that we can sample the results at any resolution (e.g. points or vertices).
We generate our final predictions at a regular grid of samples in the unwrapped
uv chart, obtaining a 3D location for each sample (obtained from the SP-Branch).
Since we have exact correspondence to pixels of the input image, each sample
also has a color value (or interpolated color value in super-resolution). Samples
corresponding to background pixels are masked out. To create a mesh, we can
connect neighboring foreground samples with edges. All visual results of our
method in the paper are generated using this approach. We provide more details.

Identifying foreground regions in the unwrapped chart. Unlike AtlasNet, the shape
and topology of the unwrapped surface in our chart is learned by the NOCS-
UV branch, which gives the reconstructed surface more flexibility to represent
arbitrary shapes and topologies. To identify foreground regions in the uv space
of the unwrapped chart, we map the the learned image-space foreground mask
to uv space. Directly unwrap the mask by learned-uv map (two channel output
from NOCS-UV branch) results in pixel cloud with holes in uv space. To solve
this issue, we up-sample the image-space mask and learned-uv map from its
original resolution of 240× 320 by a factor of 4 using linear interpolation before
mapping mask to uv space. To avoid interpolating across C0 discontinuities of
the surface, we only interpolate neighboring pixels that are mapped to similar
uv locations (i.e., the gradient of their uv coordinates is below a threshold). We
then map the up-sampled mask to uv space (resolution of 128 × 128) by the
up-sampled learned-uv map. Finally we up-sample the mask in uv space to the
desired resolution (in paper we use 512× 512).

In uv space, we additionally post-process the unwrapped foreground mask by
closing small holes using morphological operations. Finally, we remove outliers
using the predicted 3D locations (quarried from SP-Branch) of each mask sample.
A sample of the foreground mask is classified as outlier if the distance in 3D space
to its nearest neighbor is larger than a threshold t. In practice, we use t = 0.03
for chairs and t = 0.02 for cars and airplanes. Similar outlier removing operation
is also applied to image-space mask before identifying foreground regions.

Texturing the unwrapped chart. Similar to the mask, directly unwrapping the
image-space color values to the uv space results in a sparse set of irregular color
samples in uv space. We can interpolate these samples to obtain the color value
at any point in uv space by interpolating the k nearest neighbors (we use k = 4
for our results).
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S.4 Evaluation Metrics

We now define the evaluation metrics used in the paper.
A common surface representation: Before evaluating our metrics, we

convert the results of all methods to a common format to avoid biasing our results
due to different surface representations. We convert all output representations to
the NOCS-Map format defined in X-NOCS [2] using the ground truth camera
model. The NOCS map P samples the reconstructed surface from a single
viewpoint, giving a point cloud where each sample has a 2D pixel coordinate
p and a 3D location x. The 3D location is defined in a canonical coordinate
frame that is shared across views and across instances of the same shape category.
For multi-view reconstructions, we create one NOCS-Map for each viewpoint,
compute the metrics on each NOCS-Map, and average the results over all views.
As AtlasNet [1] ground truth is not in the same ShapeNet version as ShapeNet-
Plain [2], we first scale the AtlasNet results to have the same bounding box
diagonal as the ground truth 2-intersection X-NOCS maps point cloud, and then
align the lower left corner of the bounding box.

The Reconstruction Error is measured as the 2-Way-Chamfer-Distance
between the ground truth NOCS-Map P1 and predicted NOCS-Map P2:
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The reconstruction error for hidden surfaces in Table 2 of paper is computed in
the same way, but using NOCS-Maps of the hidden surfaces.

The Correspondence Error is measured as the squared distance between
the predicted 3D location xi and the ground truth location yi of the same pixel:
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We only evaluate pixels pi ∈M that are both in the predicted and ground truth
foreground masks.

Consistency Error is based on the squared distance between the predicted
3D locations of corresponding pixels in different views. For each pair of views a
and b, we identify corresponding pairs of pixels (pai , p

b
j) as pairs having a similar

ground truth 3D location in NOCS: ‖yai − ybj‖2 < ε. In practice, we set ε = 0.001.
We then average the squared distance between the predicted 3D locations xai and
xbj of all corresponding pixel pairs P2
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With the Discontinuity Score, we take a statistical approach to measure
the correctness of the surface connectivity. While the continuity of implicit or
parametric surface is a property induced by representation and method design,
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