Joint Learning of 3D Shape Retrieval and Deformation

Mikaela Angelina Uy1 Vladimir G. Kim2 Minhyuk Sung3 Noam Aigerman2
Siddhartha Chaudhuri2,4 Leonidas Guibas1
1Stanford University 2Adobe Research 3KAIST 4IIT Bombay

S.1. Related Works

Deep Learning for Shape Generation. Many neural techniques have been proposed recently for learning generative latent representations for 3D shapes, modeling geometry as implicit functions \cite{22, 24, 5}, atlases \cite{12}, volumetric grids \cite{7, 40}, point clouds \cite{1, 43, 8}, and meshes \cite{37, 39}. These models tend to under-perform on topologically complex objects with intricate part structures. Thus, other techniques focus on factorized representation, where variations in structure are modeled separately from the geometry \cite{22, 10, 25}. These generative techniques are commonly used jointly with 2D CNNs \cite{29} or shape encoders \cite{46} to enable creating a shape based on some partial observations, such as a natural image \cite{11} or a point scan \cite{6}. A simple shape retrieval \cite{23} could also be viewed as the simplest version of such a shape generator, where the system simply returns the nearest neighbor in the latent space, in fact, offering a strong baseline to other generative techniques \cite{33}.

Deformation-Aware Retrieval. Direct retrieval has the advantages of producing stock-quality meshes \cite{34, 35}, however, unless the database contains all possible objects, might not produce a good fit for an encoded target. Prior works \cite{27, 30, 36} address this issue by additionally deforming, i.e., fitting, the retrieved shape to the desired target. One approach is to exhaustively deform all shapes in the database to the target and select the best fit \cite{27}, but is however computationally expensive. Schulz et al. \cite{30} alleviates this by retrieving parametric models by representing each as a set of points and bounded tangent planes, thus enabling retrieval before the fitting process. Leveraging on deep networks, Uy et al. \cite{36} use a deep embedding to retrieve a shape and then separately deform it to the target by directly optimizing the ARAP \cite{16} loss. Their method is limited to full shapes as direct optimization is not possible with partial scans \cite{2} or natural images. They further observe that the retrieval network needs to be aware of the deformation step to retrieve a more appropriate source. We extend their approach in several ways. First, we demonstrate that one can use retrieve-and-deform method with a neural deformation technique, allowing us to handle natural images as inputs. Second, we propose a novel joint training process, which enables us to train our deformation module to be more suitable for the kind of pairs of shapes that are being retrieved. And third, we propose a novel neural deformation module that is especially suitable for heterogeneous shape collections with topological and structural variations.

3D Deformation. Deforming a source 3D model to a target is one of the fundamental problems in geometry processing. If target is a full shape, direct optimization techniques can be employed \cite{15, 31, 19}, as well as human-made \cite{20, 9, 41, 47} shapes. One can only directly optimize if a target is a full shape, however if it of a different modality, such as image or partial scan, one needs to employ priors \cite{14}. Neural techniques have been used to learn such deformation priors from collections of shapes, representing deformations as volumetric warps \cite{17, 21, 45}, cage deformations \cite{44}, vertex-based offsets \cite{38, 13} or flow-based approaches \cite{18}. To make learning easier, these techniques typically assume homogeneity in the sources and represent the deformation with the same number of parameters for each source, i.e. grid control points \cite{17}, cage mesh \cite{44} or number of vertices \cite{38}. These assumptions make them less suitable for heterogeneous databases of sources with significant structural variations at the part level. We extend the part-level reasoning that proved to be effective for other problems \cite{26, 42, 4} to neural deformation, by proposing a novel module that can learn source-specific deformations, and handle cases when sources can have different number of deformation parameters to account for part variability.

S.2. Implementation Details

Inner Deformation Optimization. To enforce the deformation module to perform more significant deformations, at each training iteration we use the deformation network’s current output for the given source and target that consists of parameters for the deformation, and directly run SGD on the deformation parameters until convergence of the fitting loss. We then measure the least-square error between the deformation network’s output and the optimized parameters, and train the module by backpropagating this error, hence enabling the network to learn stronger deformations
and getting a better estimate for how well the source could be aligned to the target after the deformation.

We initialize the inner deformation optimization with the parameters predicted by our deformation network. We propagate gradients directly to the parameters by minimizing the mean chamfer loss of the batch. We use the SGD optimizer with a learning rate of 0.05, and we terminate upon convergence (i.e., when the maximum loss change in a pair in the batch is less than 10^{-6} or it has reach the maximum number of iterations $= 2000$).

Structure-Aware Neural Deformation. We provide additional details for our structure-aware neural deformation as described in Section 3.2 of the main paper.

Our structure-aware neural deformation module predicts the deformation parameter offset from the default parameters of each source model. Specifically for a specific source-target pair, given network prediction \hat{p} and default source parameter \bar{p}, our output parameters to obtain the deformed source model is given by $\hat{p} + \alpha \ast \bar{p}$, where $\alpha = 0.1$ in all our experiments.

We also add the symmetry loss to supervise the training of our structure-aware neural deformation. Note that all the source shapes in our databases have global reflective symmetry, and have been pre-aligned so that yz-plane aligns with the symmetry axis. Given the output deformed source shape, represented as a sampled point cloud O, for target point cloud T of given target t, we reflect each point O about the yz-plane to obtain reflected point cloud O', then the symmetry loss is given by

$$\mathcal{L}_{\text{symm}} = \mathcal{L}_{\text{CD}}(O, O'),$$

where \mathcal{L}_{CD} is the chamfer distance. Then the loss we use to train our deformation module is given by

$$\mathcal{L}_{\text{total}} = \mathcal{L}_{\text{def}} + \mathcal{L}_{\text{symm}},$$

where \mathcal{L}_{def} is defined in Equation 4 in the main paper.

Connectivity constraint.

We further take advantage of our joint-training’s robustness to heterogeneous deformation spaces, and add part-connectivity constraints. We achieve this by introducing a layer that receives a deformation and projects it onto the space of contact-preserving deformations, via a simple linear transformation. Contacts are defined between pairs of connected parts where each pair introduces a set of constraints. The source models have different sets of connected parts, and hence a different number and set of constraints, making the deformation functions $\{D_s\}$ even more source-dependent.

We precompute the constraint projection matrix for each source $s \in S$ in an automatic pre-processing step, where we first identify contacts based on the distance between the closest pairs of keypoints between pairs of parts (s^p_i, s^p_j). Parts s^p_i and s^p_j are deemed connected if the closest part of keypoints falls below a threshold $\tau = 0.05$. Part keypoints is the set of face centers, edge midpoints, and corners of each part’s axis-aligned bounding box. We then define contacts as the midpoint of the closest parts between the closest pairs of keypoints between pairs of connected parts that enforces the contact point to maintain connectivity during deformation. We obtain a number of linear constraints from the collection of contacts that results in a different number of linear constraints for each source model. We concatenate all the linear constraints and represent these with constraint matrix B_s for source model s. Let Q_s be the nullspace, i.e., columns representing the nullspace basis vectors, of B_s computed via SVD, then the constraint projection matrix of s is given by $Q_sQ_s^T$.

Training details and training time. We alternately update the retrieval module and the deformation module at each iteration during our training procedure, and train for 300 epochs. To speedup training, we cache the distances to the sources for each target and update this cache every 5 epochs. We use a batch size of 16 targets in each iteration, the SGD optimizer with learning rate of 0.001, momentum of 0.9 and weight decay of 0.0005. For the inner deformation optimization, we use the SGD optimizer with a learning rate of 0.05 until the termination criteria is reached, which is when the fitting loss decreases by less than 10^{-5} or the maximum number of 5000 iterations is reached.

For our joint training module, we first train our Structure-Aware neural deformation module until convergence on random pairs, and also train our retrieval module on random pairs to initialize our joint training optimization scheme. Also note that when training image-based ResNet encoder for the retrieval and deformation modules, we warm-start with weights that are pre-trained on ImageNet, and only train the fourth block and the final fully-connected layers.

Training takes 18 and 40 hours on point clouds and images, respectively, for the chair class. With the inner loop direct optimization, the corresponding training time for chairs takes 3 days for both the point cloud and image experiments as the inner optimization dominates the runtime.

S.3. Retrieval in Latent Space

The retrieval space \mathcal{R} is defined similarly to Uy et al. [36], and we provide relevant technical details in this section for completeness. We use a PointNet or ResNet encoder to get the latent code of the target: $t_\mathcal{R} = E_\mathcal{R}(t) \in \mathbb{R}^{n_4}$ with $n_4 = 256$. The sources are represented as regions in the latent space, defined by a center code $s_\mathcal{R} \in \mathbb{R}^{n_4}$ and a variance matrix $s_\mathcal{R}'' \in \mathbb{R}^{n_4 \times n_4}$ that defines the egocentric
The variance matrix is diagonal positive definite, with the positivity enforced by the sigmoid activation function. We define the distances in the retrieval space as:

\[d(s, t)_{R} = \sqrt{(s_{R} - t_{R})^T s_{R}^w (s_{R} - t_{R})}. \]

During training we optimize the parameters of the encoder \(E_{R}(t) \) as well as latent codes and variances for each source, \(s_{R}, s_{R}^w \). \(s_{R} \) is obtained by feeding the default shape of source model \(s \) to encoder \(E_{R}(t) \). Different from Uy et al. [36], we optimize \(s_{R}^w \) in an auto-decoder fashion, since we want to represent the deformation space of the source rather than its geometry. This allows us to handle sources with similar geometry but different parameterizations.

S.4. Datasets and Evaluation Metric

We evaluate our method on the three furniture categories in the ShapeNet dataset [3] chairs (6531), tables (7939) and cabinets (1278). For our database of deformable source models, we use manually- and automatically-segmented shapes from two different datasets. Manually-segmented shapes come from the finest level of PartNet hierarchy [26], and we select random 10% of the data as our sources. Automatically-segmented shapes come from two pre-analyzed classes in ComplementMe [32] (chairs and tables), and we pick 200 random models for each. We remove the selected sources from the database, and use remaining models as training (80%) and testing (20%) targets. To demonstrate the practical utility of our method, we also test our trained networks on product images and 3D scans.

We represent the shapes by uniformly sampling 2048 points. For the image experiments, we render 24 uniformly-sampled viewpoints, and pick a random view at each iteration during training. In all cases our true targets and deformed sources are represented as point clouds, and points-to-points distances are used for training and evaluation.

S.5. Points-to-Mesh

We also test our method on point cloud targets. We first show qualitative results with real noisy and partial 3D scans in Scan2CAD dataset [2]. Figure S1 show some examples, and more are in the supplementary. As shown, given an incomplete scan, with missing parts and a noise, our approach still correctly retrieves and deforms a source database model to output a clean and complete mesh to match the scan. Our structure-aware neural deformation leverages learned shape priors to complete missing regions.

We also provide qualitative and quantitative results on our test set of point clouds sampled from ShapeNet meshes in Table S1 and Figure S2. As in the previous section, we report our results (Ours) along with our method with the inner direct optimization step (Ours w/ IDO). Since our input are point clouds, similar to prior work [36] we can also directly optimize the chamfer distance to make our output fit better to the inputs, and we report results with this post-process as well (Ours + DO, Ours w/ IDO + DO).

Deformation-Aware Retrieval Baseline.

We compare to deformation-aware retrieval [36] (DAR) followed by either directly optimizing with respect to our per-part parameters (DAR+DO), or using our neural deformation module pre-trained on random pairs (DAR+DF). Note that the direct optimization step is only possible with complete inputs and cannot be employed with partial data such as 3D scans or images. Our method outperforms this baseline with and without the direct optimization step (Table S1).
Qualitative results in Figure S2, also demonstrate that our method retrieves structurally similar shapes and deforms them to a better fit for the target. Even if retrieved shape is identical (chair in the first row), the deformation learned with our method is superior (e.g., see seat alignment).

Template-Classification Baseline. We also compare to a template-classification-based approach mimicked from [9] (Classif). Instead of using a non-learnable deformation module via direct optimization of handcrafted templates as in [9], we use our pre-trained neural deformation module (DF) to make the baseline computationally feasible. We treat every source shape as a template, deform it to each training target, and train a classifier based on the best match. We use this classifier instead of the retrieval module at inference time, and show the fitting error in Table S1. Note that this baseline is worse than our method and even [36].

Biased Sampling Ablation. As in the image target case, we demonstrate the importance of biased sampling in joint training (Table S1, Uniform Sampling).

Performance on Auto-Segmented Data. Since manually segmenting a collection of source shapes is an expensive process, we test our method on automatically-segmented models. We use a heuristic method proposed in ComplementMe [32] grouping connected components of meshes.

Table S1. Comparing our method to various baselines and ablations on points-to-mesh benchmark (chamfer distances, $\times 10^{-2}$).

<table>
<thead>
<tr>
<th></th>
<th>Chair</th>
<th>Table</th>
<th>Cabinet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classif.+DO</td>
<td>1.826</td>
<td>2.192</td>
<td>1.144</td>
</tr>
<tr>
<td>DAR+DO</td>
<td>0.584</td>
<td>0.452</td>
<td>0.633</td>
</tr>
<tr>
<td>Ours+DO</td>
<td>0.504</td>
<td>0.414</td>
<td>0.494</td>
</tr>
<tr>
<td>Ours w/ IDO+DO</td>
<td>0.484</td>
<td>0.407</td>
<td>0.485</td>
</tr>
</tbody>
</table>

Table S2. Using auto-segmented models as the source database [32] (chamfer distance ($\times 10^{-2}$)).

<table>
<thead>
<tr>
<th></th>
<th>Chair</th>
<th>Table</th>
<th>Cabinet</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAR+DF</td>
<td>0.965</td>
<td>1.561</td>
<td>0.829</td>
</tr>
<tr>
<td>Uniform Sampling</td>
<td>0.998</td>
<td>1.502</td>
<td>0.767</td>
</tr>
<tr>
<td>Ours</td>
<td>0.763</td>
<td>0.696</td>
<td>0.715</td>
</tr>
<tr>
<td>Ours w/ IDO</td>
<td>0.691</td>
<td>0.670</td>
<td>0.696</td>
</tr>
</tbody>
</table>

Table S3. Using our joint training with Neural Cages [44] deformation module (chamfer distances, $\times 10^{-2}$).

Figure S3. Fitting results using auto-segmented sources [32].

Figure S4. Using Neural Cages [44] as a deformation module in our joint training.

As shown in Figure S3, even though the models have inconsistent segmentations, our method can still successfully learn a meaningful deformation module. We also outperform the baseline (DAR+DF, Uniform Sampling) in the quantitative benchmark (Table S2).

Performance with Neural Cages [44]. Since our joint training is not restricted to our structure-aware deformation, we further evaluate the performance of our framework with an alternative neural deformation method. We pick Neural Cages [44], a state-of-the-art technique that parameterizes global warping as a cage-based deformation. We simply replace our structure-aware deformation with Neural Cages, without any other changes to our joint training process (Ours NC). We further compare to the baseline of running deformation-aware retrieval [36] with neural cage module that is pre-trained on random pairs (DAR+NC). Joint training offers an improvement with respect to our benchmark on all categories of shapes (see Table S3). Qualitative results in Figure S4 show that our joint training scheme can better retrieve shapes such as chairs with the right back and seat shape (first two rows), and a cabinet with shelves.

We remark that our joint training does not constraint the choice of the neural deformation module. One can choose any module based on its strengths and weaknesses. For in-
Randomly sample 50, 100, 200, 400, and 800 chair models from varying the size of the database of source models. We ran-evaluate the performance of different techniques while Performance for Different Database Sizes.

as shown by the differences in the legs of the chair. given target, but our joint approach achieves the best output where all methods retrieve the same source model for the a qualitative example in Figure Improvement in Deformation Module. It also lacks the ability to change the geometry of individual local parts. In contrast, our deformation module allows thickening parts such as the seat of the chair in the second row of Figure S4. This implies that Neural Cages can be used when a tighter fit to the target is prioritized while our method can be used when it is more desired to preserve and manipulate part-level structure of the object. Our method is also more suitable for heterogeneous sources whose deformations need to be parameterized in different manners.

Improvement in Deformation Module. As in the image target case, we demonstrate the improvement in the deformation module alone using oracle retrieval with joint training (Ours), random pairs (DF), and without biased sampling (Uniform Sampling), see Table S4. We demonstrate a qualitative example in Figure S5 showing an example where all methods retrieve the same source model for the given target, but our joint approach achieves the best output as shown by the differences in the legs of the chair.

Performance for Different Database Sizes. We further evaluate the performance of different techniques while varying the size of the database of source models. We randomly sample 50, 100, 200, 400, and 800 chair models from PartNet to construct the source databases. Table S5 shows that in all cases our joint training approach improves the performance over the baselines. The boost in the performance of our joint training is bigger in larger databases as there are combinatorially more random source-target pairs which may not be deformable.

S.6. Additional Quantitative Evaluations

No connectivity constraint ablation. We also test our joint training scheme in the setting where the source database models do not have connectivity constraints. In this set-up we do not use the constraint projection matrix. Table S6 shows that even in the set-up with no connectivity, our approach achieves the best results in all three object classes.

Retrieval-and-deformation results for different retrieved sources. We further evaluate how well our method works with other than top-1 retrieved source. In particular, we plot the mean chamfer distance for the kth retrieved source, for k = 1, 2, 3, 4, 5.

For image-to-mesh experiment, we show the result in Figure S6, which complements Table 1 of the main paper. For points-to-mesh experiment, we show the result in Figure S7, which complements Table S1 of the main paper. Note that in both cases the chamfer distance for up to top-5 retrieved results is consistently lower than the baselines.

Retrieval module evaluation. We further evaluate the retrieval modules of our joint approach compared to the baselines. To evaluate the retrieval module, we report both ranking evaluation and recall similar to the metrics used in [36].

One challenge in defining an evaluation metric is that we do not know which source model should be used for each target. Thus, to create the ground truth we use oracle retrieval, where we use the each method’s deformation module to deform each source to the target, and assume that if we sort the sources by the chamfer distance, it will give us the desired ground truth ordering for the retrieval.

Ranking evaluation reports the average rank of the top-1 retrieved model with respect to this ground truth. We report the metrics for image-to-mesh (Table S7) and points-to-mesh (Table S8) experiments, across all categories, and see consistent improvement with respect to the baselines.

We also report the recall of retrieval modules. For recall@N, a correct match is defined as the case where at least one of the top-N retrieved models is in the top-5 ranks based on the oracle retrieval module. We report both

<table>
<thead>
<tr>
<th></th>
<th>Chair</th>
<th>Table</th>
<th>Cabinet</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAR+DF (No Conn.)</td>
<td>1.107</td>
<td>1.728</td>
<td>1.480</td>
</tr>
<tr>
<td>Uniform Sampling (No Conn.)</td>
<td>1.129</td>
<td>1.655</td>
<td>1.358</td>
</tr>
<tr>
<td>Ours (No Conn.)</td>
<td>0.757</td>
<td>0.708</td>
<td>0.846</td>
</tr>
</tbody>
</table>

Table S6. Our approach compared to the baselines in the setup with no connectivity constraint.

<table>
<thead>
<tr>
<th></th>
<th>Chair</th>
<th>Table</th>
<th>Cabinet</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAR+DF</td>
<td>0.872</td>
<td>0.877</td>
<td>0.823</td>
</tr>
<tr>
<td>Uniform Sampling</td>
<td>0.858</td>
<td>0.860</td>
<td>0.803</td>
</tr>
<tr>
<td>Ours</td>
<td>0.850</td>
<td>0.841</td>
<td>0.748</td>
</tr>
<tr>
<td>Uniform Sampling w/ IDO</td>
<td>0.938</td>
<td>0.985</td>
<td>0.784</td>
</tr>
<tr>
<td>Ours w/ IDO</td>
<td>1.142</td>
<td>1.541</td>
<td>0.734</td>
</tr>
</tbody>
</table>

Table S5. Performance on of our method and various baselines with different source database sizes (chamfer distances, ×10−2).
Figure S6. Quantitative evaluation of Image-to-Mesh.

Figure S7. Quantitative evaluation of Points-to-Mesh.

<table>
<thead>
<tr>
<th></th>
<th>Chair</th>
<th>Table</th>
<th>Cabinet</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAR+DF</td>
<td>23.98</td>
<td>59.51</td>
<td>19.50</td>
</tr>
<tr>
<td>Uniform Sampling</td>
<td>20.88</td>
<td>53.01</td>
<td>23.39</td>
</tr>
<tr>
<td>Ours</td>
<td>15.35</td>
<td>22.19</td>
<td>21.70</td>
</tr>
<tr>
<td>Ours w/ IDO</td>
<td>21.94</td>
<td>36.92</td>
<td>16.89</td>
</tr>
</tbody>
</table>

Table S7. Ranking evaluation for retrieval. Comparing our method using the ranking evaluation metric on image-to-mesh benchmark. Numbers show the average rank of the retrieved model. (Lower is better)

<table>
<thead>
<tr>
<th></th>
<th>Chair</th>
<th>Table</th>
<th>Cabinet</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAR+DF</td>
<td>13.88</td>
<td>76.25</td>
<td>20.20</td>
</tr>
<tr>
<td>Uniform Sampling</td>
<td>18.27</td>
<td>72.44</td>
<td>23.44</td>
</tr>
<tr>
<td>Ours</td>
<td>6.37</td>
<td>6.97</td>
<td>17.91</td>
</tr>
<tr>
<td>Ours w/ IDO</td>
<td>6.62</td>
<td>18.03</td>
<td>18.22</td>
</tr>
</tbody>
</table>

Table S8. Ranking evaluation for retrieval. Comparing our method using the ranking evaluation metric on points-to-mesh benchmark. Numbers show the average rank of the retrieved model. (Lower is better)

<table>
<thead>
<tr>
<th></th>
<th>Chair</th>
<th>Table</th>
<th>Cabinet</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAR+DF</td>
<td>37.53</td>
<td>74.65</td>
<td>22.37</td>
</tr>
<tr>
<td>Uniform Sampling</td>
<td>38.94</td>
<td>75.56</td>
<td>21.05</td>
</tr>
<tr>
<td>Ours</td>
<td>53.60</td>
<td>81.03</td>
<td>30.70</td>
</tr>
<tr>
<td>Ours w/ IDO</td>
<td>45.65</td>
<td>77.30</td>
<td>35.96</td>
</tr>
</tbody>
</table>

Table S9. Recall evaluation for retrieval. Comparing our method using the ranking evaluation metric on image-to-mesh benchmark. Numbers show recall@1 and recall@5. A correct retrieval is when the top-1 and top-5 retrieved models is in the top-5 ranks based on the oracle retrieval. (Higher is better)

Games of “no difference” can also be selected. Our approach got an average score of **8.02**, compared to 3.5 for the baseline and 3.48 abstain votes.
Table S10. **Recall evaluation for retrieval.** Comparing our method using the ranking evaluation metric on points-to-mesh benchmark. Numbers show recall@1 and recall@5. A correct retrieval is when the top-1 and top-5 retrieved models is in the top-5 ranks based on the oracle retrieval. (Higher is better)

<table>
<thead>
<tr>
<th></th>
<th>Chair</th>
<th>Table</th>
<th>Cabinet</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>recall@1</td>
<td>recall@5</td>
<td>recall@1</td>
</tr>
<tr>
<td>DAR+DF</td>
<td>61.56</td>
<td>93.54</td>
<td>23.57</td>
</tr>
<tr>
<td>Uniform Sampling</td>
<td>53.27</td>
<td>89.98</td>
<td>25.03</td>
</tr>
<tr>
<td>Ours</td>
<td>75.31</td>
<td>97.02</td>
<td>73.71</td>
</tr>
<tr>
<td>Ours w/ IDO</td>
<td>76.22</td>
<td>96.60</td>
<td>55.17</td>
</tr>
</tbody>
</table>

Table S11. **Additional object categories.** Comparing our method to various baselines and ablations on additional object classes and mixture of categories (chamfer distances, $\times 10^{-2}$).

<table>
<thead>
<tr>
<th></th>
<th>Vase</th>
<th>Bed</th>
<th>Trash Can</th>
<th>Combined</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAR+DF</td>
<td>1.538</td>
<td>4.498</td>
<td>0.889</td>
<td>1.968</td>
</tr>
<tr>
<td>Uniform Sampling</td>
<td>1.633</td>
<td>4.196</td>
<td>0.886</td>
<td>1.821</td>
</tr>
<tr>
<td>Ours</td>
<td>1.384</td>
<td>2.138</td>
<td>0.863</td>
<td>0.810</td>
</tr>
</tbody>
</table>

Figure S9. Additional qualitative results on comparisons between our approach and the baselines for the points-to-mesh experiments.

where segmentation is essential to the performance of the structure-aware neural deformation module.

Product images targets. Figure S12 shows additional qualitative results of our approach on product images.

Scan2CAD targets. Figure S10 shows additional results of our approach on real scans from the Scan2CAD [2] dataset using the manually segmented PartNet [26] database, while Figure S11 shows the results on real scans using the auto-segmented ComplementMe [32] database.

Image-to-Mesh baseline comparison. Figure S13 shows additional qualitative results on the image-to-mesh set-up that compares our method to the baselines.

Points-to-Mesh baseline comparison. Figure S9 shows additional qualitative results of our joint approach compared to the baselines on the points-to-mesh experiment.

Neural cages. Figure S8 shows additional qualitative results of our joint approach on Neural Cages [44].

Points-to-Mesh ablations qualitative results. Figure S14 shows qualitative results of ablations of our joint approach on the points-to-mesh experiment.

S.6.1 **Additional Qualitative Results.**

We provide additional qualitative results using natural images, point cloud scans, and our benchmark as input targets. Note that in all visualizations, we use colors to indicate different segmentations of the source models,
S.7. Discussion on [9]

The differences between our work and with [9] are as follows:

1. **Non-learnable deformations**: The fitting module of [9] is not learnable; they directly optimize parameters of a handcrafted template to fit to an input point cloud. Thus, one of our key contributions, a retrieval-aware deformation, is incompatible with their method.

2. **Infeasibility of image-to-mesh**: Without learnable deformations, their method cannot be used for the main application of our method, image-to-mesh generation.

3. **Manually-designed templates**: Designing templates is a tedious manual task that requires significant expertise. Their method requires users to pre-design a set of templates, hence they only use a small set of 21 templates.

4. **Non-scalable system**: While one could address solving our retrieval problem as a classification problem by treating every source shape as a template, this approach is not scalable. Their method requires a pre-process of manually-designed templates, hence they only use a small set of 21 templates.

5. **Specific to template-based deformations**: Our key contribution, joint learning for retrieval and deformation, is not constrained to a specific choice of the deformation module.

We also remark that, while both ours and their method leverage on part bounding boxes for deformations, neither of these two were the first to use bounding boxes to deform the underlying geometry (e.g., [20]).

References

Figure S10. More qualitative results using the Scan2CAD [2] dataset using manually segmented shapes in PartNet [26].

Figure S11. More qualitative results using the Scan2CAD [2] dataset using autosegmented shapes in ComplementMe [32].

Figure S12. More qualitative results on product images.

[34] Trimble. 3D warehouse. 1

[35] TurboSquid. TurboSquid. 1

[38] Weiyue Wang, Duygu Ceylan, Radomir Mech, and Ulrich Neumann. 3DN: 3D deformation network. In *CVPR*, 2019. 1

[40] Jiajun Wu, Chengkai Zhang, Tianfan Xue, Bill Freeman, and Josh Tenenbaum. Learning a probabilistic latent space of object shapes via 3D generative-adversarial modeling. In *NeurIPS*, 2016. 1

[41] Kai Xu, Honghua Li, Hao Zhang, Daniel Cohen-or, Yueshan Xiong, and Zhi-Quan Cheng. Style-content separation by anisotropic part scales. In *SIGGRAPH Asia*, 2010. 1

Figure S13. More qualitative results on Image-to-Mesh.
Figure S14. More qualitative results on Points-to-Mesh.