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Abstract. In this work, we propose a novel uncertainty-aware object de-
tection framework with a structured-graph, where nodes and edges are
denoted by objects and their spatial-semantic similarities, respectively.
Specifically, we aim to consider relationships among objects for effec-
tively contextualizing them. To achieve this, we first detect objects and
then measure their semantic and spatial distances to construct an ob-
ject graph, which is then represented by a graph neural network (GNN)
for refining visual CNN features for objects. However, refining CNN fea-
tures and detection results of every object are inefficient and may not
be necessary, as that include correct predictions with low uncertainties.
Therefore, we propose to handle uncertain objects by not only transfer-
ring the representation from certain objects (sources) to uncertain ob-
jects (targets) over the directed graph, but also improving CNN features
only on objects regarded as uncertain with their representational out-
puts from the GNN. Furthermore, we calculate a training loss by giving
larger weights on uncertain objects, to concentrate on improving uncer-
tain object predictions while maintaining high performances on certain
objects. We refer to our model as Uncertainty-Aware Graph network
for object DETection (UAGDet). We then experimentally validate ours
on the challenging large-scale aerial image dataset, namely DOTA, that
consists of lots of objects with small to large sizes in an image, on which
ours improves the performance of the existing object detection network.
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1 Introduction

Given an input image, the goal of object detection is to find the bounding boxes
and their corresponding classes for objects of interests in the image. To tackle
this task, various object detection models based on conventional convolutional
neural networks (CNNs), including Faster R-CNN [29] and YOLO [28], to recent
transformer-based [32] models, such as DETR [3] and Deformable DETR [37],
are proposed, showing remarkable performances. In other words, there have been
considerable attentions to search for new architectures, for improving their per-
formances on various object detection tasks, for example, finding objects in aerial
images from Earth Vision [34].
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Fig. 1: Concept Figure. Given an input image, initial object detection is done,
which generates uncertainties of objects as well. Blue objects with low uncertain-
ties and red objects with high uncertainties are set as source and target nodes,
respectively. A directed graph connecting source nodes to target nodes, where
edges are generated based on spatial-semantic distances between nodes, is fed
into GNNs to obtain refined representations of objects.

However, despite their huge successes, most existing models are limited in
that they do not consider interactions among objects explicitly, which are differ-
ent from how humans perceive images: considering how each object is spatially
and semantically related to every other objects, as well as capturing visual fea-
tures of local regions, for contextualizing the given image. Thus, we suppose that
a scheme that does model explicit relationships among objects in the image is
necessary for any object detection networks. Note that it becomes more impor-
tant when handling aerial images [34], which we mainly target, that consist of a
large number of objects with varying scales from extremely small to large than
images in the conventional datasets (i.e., COCO [26] or Pascal VOC [9]). The
most straightforward approach to consider relationships in the image is to con-
struct an inherent hierarchy, where local-level features for identifying local parts
are obtained by outputs of CNNs on sub-regions, whereas global-level features
for overall understanding of an entire image are obtained by aggregating locally
obtained CNN features [27, 25, 5]. However, this scheme is highly suboptimal,
since it does not explicitly consider semantic and spatial relationships among
objects with object representations, but it does implicitly model their relation-
ships with CNN features from different sub-regions. Therefore, in this work, we
aim to first detect objects in the given input image with conventional object
detection networks (e.g., Faster R-CNN [29] or RoITransformer [7]), and then
calculate the edges between them with their distances of semantic and spatial
features. After that, over the constructed graph with objects as nodes and their
distances as edges, we leverage the graph neural networks (GNNs) [23, 17] to
obtain graphical features of objects, which are then combined with previously
obtained visual CNN features for improving final object prediction performances.
Note that, recently, there exist few similar works [20, 35] that consider explicit
interactions between all objects by constructing either a fully connected object
graph [20] or a spatial-aware sparse graph [35], whose object representations are
used to improve CNN features for object detection. However, is it necessary to
refine CNN features and detection results of every object?
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We suppose that, if the prediction results of object detection networks are
sufficiently certain, it would not be necessary to replace their features and pre-
diction labels. Therefore, in this work, we aim to improve the prediction results
only on uncertain objects that detection models are mostly confused about, by
leveraging the uncertainty on each object when constructing object graphs and
refining object features in the given image. Specifically, when we construct a
graph composed by objects (nodes) and their both semantic and spatial similar-
ities (edges), we propose to propagate the information from certain objects to
uncertain ones by defining directions on edges represented by a directed graph.
This scheme allows the model to improve the features of uncertain objects by
contextualizing them with their semantically- and spatially-related certain ones,
but also prevents the certain objects to receive noisy information from objects
that are uncertain, which is also highly efficient because of ignoring a large num-
ber of edges between certain objects compared against existing models [20, 35]
that consider all object pairs. Moreover, when we refine CNN features by repre-
sentations of the object graph from GNNs, we propose to manipulate the features
for only uncertain objects, rather than changing all object features, which allows
the model to focus on improving uncertain objects while maintaining the high
prediction performances on certain objects. Lastly, to further make the model
focus on uncertain objects, we scale the training loss based on uncertainties,
where uncertain predictions get higher weights in their losses.

We refer our novel object detection framework, which explicitly models re-
lationships between objects over the directed graph with their uncertainties,
as Uncertainty-Aware Graph network for object DETection (UAGDet), which
is illustrated in Fig. 1. We then experimentally validate our UAGDet on the
large-scale Dataset for Object deTection in Aerial images (DOTA) [34] with
two different versions: DOTA-v1.0 and DOTA-v1.5, containing large numbers
of small and uncertain objects with sufficient interaction existing among them.
Therefore, we suppose our UAGDet is highly beneficial in such a challenging
scenario. Experimentally, we use RoITrans [7] as a backbone object detection
network, and the results show that our UAGDet shows 2.32% and 3.82% per-
formance improvements against the backbone RoITrans network on DOTA-v1.0
and -v1.5 datasets, respectively, with mean Average Precision (mAP) as an eval-
uation metric. Also, further analyses show that our graph construction method
considering both semantic and spatial features connects related objects by edges,
and also uncertainties are measured high on incorrect predictions which are cor-
rected by refined features from graph representations.

2 Related Works

Object Detection. Object detection is the task of localizing and classifying ob-
jects of interest in an image. To mention a few, Faster R-CNN [29] and YOLO [28]
are two CNN-based early models, successfully demonstrating deep learning’s
capability in the object detection task. Recently, following the success of trans-
formers [32] in natural language processing, DETR [3] adopts transformers in the
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object detection task, which performs self-attention on CNN features from dif-
ferent sub-regions of an input image to consider their relationships. Furthermore,
Deformable DETR [37] is proposed to attend only to the relative spatial loca-
tions when performing self-attention rather than considering all locations, which
makes the transformer-based prediction architecture efficient. However, despite
their huge improvements in regard to developing new object detection networks
and their performances, they largely overlook the relationships among objects.
In particular, CNN-based models rely on constructing hierarchical structures of
local and global features for capturing feature-level relationships via multi-level
feature map, which is known as a feature pyramid network (FPN) [25], but not
capturing the explicit object-level relationships. Meanwhile, transformer-based
models only implicitly consider relationships between candidate queries for ob-
jects, but also candidate queries often include duplicated objects or meaningless
background areas which particularly belong to ’no object’. Thus, unlike these
previous works, we propose to explicitly model object-level relationships, by ini-
tially detecting objects and then, over the graph structure with objects as nodes,
representing them with graph neural networks (GNNs) for obtaining graphical
features, which are then combined with CNN features for final object detection.

Graph Neural Networks for Object Detection. Graph Neural Networks
(GNNs), which expressively represent graph structured data consisting of nodes
and edges by iteratively aggregating features from target node’s neighbors, have
gained substantial attention in recent years, showing successes in various down-
stream tasks working on graphs [23, 16, 33, 2, 21, 17]. As such model architectures
explicitly leverage the relationships between connected instances when represent-
ing them, there have been recent attempts to use GNNs on the object detection
task to capture interactions among objects [35, 24, 4]. For instance, GAR [24]
constructs a context graph, which considers interactions between objects and
scenes but also between the objects themselves by forming objects and scenes as
nodes and their connections as edges, and then represents the graph with GNNs.
Similarly, Relation R-CNN [4] generates semantic and spatial relation networks
with objects as nodes, using pre-built co-occurrence matrix and distances be-
tween objects, respectively, for forming edges. However, both GAR [24] and Re-
lation R-CNN [4] have an obvious limitation that the edge generation procedure
is not end-to-end trainable, but based on simple heuristics using pre-calculated
statistics of co-occurrences between instances. On the other hand, SGRN [35]
learns a spatial-aware relation network between objects based on visual features
and spatial distances of initial proposals, which is then forwarded to GNNs for
obtaining representations for objects. Note that our work has key differences
against such a relevant work: instead of working on all object proposals, we first
largely reduce them with non-maximum suppression (NMS) [6, 10], and then aim
at improving only the uncertain objects that the model is largely confused about
by generating semantic and spatial yet directed edges from certain objects to un-
certain ones, which greatly reduces computational costs especially when dealing
with lots of objects in a single image (e.g., DOTA [34]).
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Uncertainty-Aware Object Detection. One of the main focuses of Bayesian
deep learning in computer vision tasks is to accurately capture uncertainty of
a model’s prediction, which allows the deep learning models to prevent making
incorrect predictions when their uncertainties are high. Following the success-
ful applications of uncertainty on semantic segmentation and depth estimation
tasks [11, 22, 30], some works propose to utilize uncertainty in the object detec-
tion task as well [19, 13]. In particular, Xu et al. [19] propose to merge overlapping
bounding boxes based on the weights of their coordinates obtained from uncer-
tainties (i.e., the larger the uncertainties, the lower the weights) when performing
soft-NMS [1], which contributes to accurately localizing bounding boxes. Also,
CertainNet [13] measures uncertainties using the distances between predicted
features and learnable class centroids (i.e., the larger the distances at inference
time, the higher the uncertainties), which is based on the work of determinis-
tic uncertainty quantification (DUQ) [31]. However, it does not use uncertainty
for improving model’s prediction, but only calculates uncertainty values of pre-
dicted objects. Note that, in contrast to those previous works [19, 13] that use
uncertainty either on combining overlapping bounding boxes or on identifying
less certain objects, we leverage uncertainties in totally different perspectives.
That is we propose to refine representations of uncertain objects by transferring
knowledge from certain objects to uncertain ones over the directed graph struc-
ture, which may correct initially misclassified objects with high uncertainties.

3 Method

Faster R-CNN Baseline. We first define the notations and terms for objec-
tion detection by introducing the object detection pipeline of the Faster R-CNN
model [29]. In Faster R-CNN, initial N proposals propi(i = 1, ..., N) are gen-
erated from an input image by Region Proposal Networks (RPN). Then, we

obtain N CNN feature maps f̂ conv
i , each of which is associated with its proposal

propi, with Region of Interest (RoI) extraction modules (e.g., RoIPool [15] or
RoIAlign [18]), to make use of such features for finding bounding boxes and their
classes. Specifically, extracted CNN features are fed into two separated fully con-
nected layers, called classification head and regression head, to obtain the class
prediction result pi and the coordinates of detected bounding box bboxi for each
proposal, respectively. The entire process is formally defined as follows:

propi, conv feature = RPN(image),

f̂ conv
i = RoIAlign(propi, conv feature),

p̂i = cls head(f̂ conv
i ), b̂boxi = reg head(f̂ conv

i ),

(1)

where RPN is a region proposal network for extracting object proposals, RoIAlign
is a CNN feature extraction module for each proposal, cls head is a object
classification network, and reg head is a bounding box regression network. p̂i and

b̂boxi denote predicted class label and bounding box coordinates, respectively.
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To optimize a model during training, classification loss Lcls is calculated
from classification results with CrossEntropy loss, and regression loss Lreg is
calculated from regression results with SmoothL1 loss [14], defined as follows:

Lcls =

N∑
i

CrossEntropy(p̂i, yi), Lreg =

N∑
i

SmoothL1(b̂boxi, bboxi), (2)

where yi denotes an one-hot vector of a ground-truth label of a proposal i, and
bboxi denotes a ground-truth bounding box coordinates. Then, based on two
object detection losses Lcls and Lreg, overall training loss is formulated as a
weighted sum of them: Lobj = Lcls + λ1 × Lreg, where λ is a scaling factor.
Note that, in the test time, Non-Maximum Suppression (NMS) is applied so
that duplicated bounding boxes with high overlapping areas and non-promising
bounding boxes with low confidences are removed.

Overview of Our Uncertainty-Aware Graph Network. In this work, we
aim to further improve the object detection network, for example, Faster R-CNN,
by leveraging the object representations over the directed graph, which transfers
knowledge from certain objects to uncertain objects by reflecting their semantic-
spatial distances via Graph Neural Networks (GNNs). To achieve this goal, we
first measure the uncertainty of every detected object with minimal costs, while
following the initial object detection pipeline represented in equation 1, which
we specify in Subsection 3.1. Then, we construct an object graph consisting of
objects as nodes and their spatial and semantic relatedness as edges, to contex-
tualize all objects in the input image with a message passing scheme of GNNs.
However, since changing features and prediction results for certain objects may
not be necessary, we focus on improving uncertain objects by leveraging their
contextual knowledge with semantic-spatial relationships to certain objects. We
introduce this uncertainty-based graph generation procedure in Subsection 3.2.
After that, based on object representations obtained by GNNs over the object
graph: node features from visual CNN features and initial object classes; edge
weights from pairwise spatial distances among objects, we refine the features for
uncertain objects to improve their prediction performances, which is described
in Subsection 3.3. We finally summarize our overall object detection pipeline in
Subsection 3.4, which is also illustrated in Figure 1.

3.1 Uncertainty-Aware Initial Object Detection

Using the Faster R-CNN pipeline defined above, we can predict N classification
results and their corresponding bounding boxes. Then, in this subsection, we
describe how to measure the uncertainty of detected objects along with the
Faster R-CNN architecture, to find out the target objects worth refining.

We first define the uncertainty of each object as ϕi. Then, to measure this,
we use MC Dropout [12]. In particular, MC dropout can approximate an un-
certainty of outputs, obtained from M times of repeated forward passes while
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Algorithm 1 Lightweight MC Dropout

Input: an image I, and the number of dropout iterations M .
Outputs: N numbers of classification results {p1, ..., pN} with their corresponding
bounding boxes {bbox1, ..., bboxN} and uncertainties {ϕ1, ..., ϕN}, where N denotes the
number of object proposals.

1: {(propi, conv feature)}Ni=1 ← RPN(I)
2: {(f̂conv

i )}Ni=1 ← {RoIAlign(propi, conv feature)}Ni=1

3: for j ← 1, . . . ,M do
4: {pji}

N
i=1 ← {cls head(f̂conv

i )}Ni=1

5: {bboxj
i}

N
i=1 ← {reg head(f̂conv

i )}Ni=1

6: end for //p and bbox are stacked to shape : (N,M, ...)
7: pi ← mean({pji}

M
j=1)

8: bboxi ← mean({bboxj
i}

M
j=1)

9: ϕi ← stdev({pji}
M
j=1)

10: return {p1, ..., pn}, {bbox1, ..., bboxn}, {ϕ1, ..., ϕn}

enabling dropout, by calculating a variance of them. To alleviate the excessive
computational cost of MC Dropout caused by repeated forward passes through
every layer, we introduce a slightly modified version of the original MC dropout.
This approach is simple – instead of repeating whole forward passes, we only re-
peat forward passes with dropout in last fully connected layers of Faster R-CNN
model’s classification head and regression head, that are cls head and reg head

in equation 1. Therefore, we can measure each object’s uncertainty with minimal
additional computational costs. Also, the suggested uncertainty measure can be
easily implemented to other object detection frameworks, since the only modi-
fication required is simply repeating last forward steps M times with dropout.
The formal algorithm of the lightweight MC Dropout is shown in Algorithm 1.

After the object detection step above, we apply NMS with 1/10 of the usual
threshold value to remove redundant and meaningless objects while maintaining
source and targets objects, instead of excessively removing lots of objects except
for the most certain ones. Consequently, after the initial detection and NMS
phases, Nnms objects with their features and uncertainties remain. Note that
when any vector existing at this point is used in subsequent layers, their gradients
are detached so that the initial detection model is left unaffected by the following
modules.

3.2 Uncertainty-Based Spatial-Semantic Graph Generation

In this subsection, we now explain how to construct an object graph based on
objects’ uncertainties and their spatial-semantic distances. At first, we first sort
all Nnms objects based on their uncertainties in ascending order. Then, the top
half with low uncertainties belongs to the source set Vsrc, and the bottom half
with high uncertainties belongs to the target set Vdst. After categorizing all
objects into source and target, we construct a directed bipartite graph G that
consists of a set of object nodes V = {Vsrc ∪ Vdst} and their edge set E , where
source node vsrc and target node vdst belong to source set Vsrc and target set
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Vdst, respectively: vsrc ∈ Vsrc and vdst ∈ Vdst. Note that, in our directed bipartite
graph, every edge ei ∈ E connects only the source node to the relevant target
node but not in the reverse direction, so that only target nodes (i.e., uncertain
nodes) are affected by source nodes (i.e., certain nodes).

Then, to share the knowledge only across relevant nodes, instead of connect-
ing every pair of nodes, we aim at connecting a related pair of nodes. To do so,
based on the motivation that each object is likely to be affected by its nearby
objects, our first criterion of relatedness is defined by a spatial distance between
source and target nodes. Specifically, we calculate the Euclidean distance be-
tween two nodes’ coordinates csrc and cdst and consider it as a spatial distance
measure, which is formally defined as follows: dspa(vsrc,vdst)

= ||csrc − cdst||2. Here,

if dspa(vsrc,vdst)
is smaller than the certain spatial threshold value thrspa, we add

an edge ei = (vsrc, vdst) to the graph. Therefore, every target node has edges to
its nearby source nodes.

On the other hand, we also consider the semantic distance between object
nodes to further contextualize them based on their representation-level similari-
ties. To be specific, we similarly calculate the Euclidean distance between CNN
features of source and target objects, which is considered as a semantic distance
and formally defined as follows: dsem(vsrc,vdst)

= ||f̂ conv
src − f̂ conv

dst ||2, where f̂ conv
src and

f̂ conv
dst denote CNN feature maps for source and target objects, respectively. After
that, similarly in the edge addition scheme for spatial distances, if dsem(vsrc,vdst)

is

smaller than the semantic threshold thrsem, we add an edge ei = (vsrc, vdst).

3.3 Feature Refinement via GNNs with Spatial-Semantic Graph

With the spatial-semantic graph G = (V, E) built above, we aim at refining the
target (i.e., uncertain) node representations by aggregating features from their
source (i.e., certain) node neighbors via GNNs. Before doing so, we have to define
node features and edge weights, which we describe in the following paragraphs.

At first, we aim to initialize the node features as features of the CNN outputs
and the predicted class. To do so, we first apply 1×1 convolutions to CNN
features for each object, to generate a more compact visual representation f̂down

i

by downsizing original features f̂ conv
i in equation 1, therefore having half of the

original channel dimension. Also, to explicitly make use of the predicted class
information, we regard the index of the maximum value (e.g., argmax) in the
initial probability vector p̂i as its class, and then embed it into the representation
space. After that, by concatenating both the down-sized CNN features and the
class embedding vector, we initialize the node features f̂node

i for each node. The
overall process is formally represented in equation 3 below.

On the other hand, edge weight used for neighborhood aggregation in GNNs
is defined as a reciprocal of a pairwise spatial distance between source and tar-
get nodes divided by the diagonal length of the input image I for normalization,
formulated as follows: wi = 1/(dspa(vsrc,vdst)

× diag len(I)) for ei = (vsrc, vdst),

where diag len denotes a function returning the length of a diagonal of the
given image. Note that such an edge weighting scheme allows the GNN model
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to give larger weights on nearby objects during the aggregation of features from
neighboring source nodes to the target node. For GNN, we use two Graph Con-
volutional Network (GCN) [23] layers, and the overall graph feature extraction
procedure is as follows:

f̂down
i = 1x1Conv(f̂ conv

i ), ĉi = embed(argmax(p̂i))

f̂node
i = concat(f̂down

i , ĉi), wi = 1/(dspa(vsrc,vdst)
× diag len(I)),

f̂gnn
i = GCN(E , f̂node, w),

(3)

where 1x1Conv denotes the 1×1 convolutional operation, argmax returns the in-
dex of the maximum value, embed denotes the class embedding function, concat
denotes the concatenation operation, and we use the GCN for representing nodes
in GCN. Based on equation 3, the resulting node features for each object f̂gnn

i

capture visual and class features based on its relationships to other certain ob-
jects as well as itself, but also capture explicit relatedness between source and
target nodes via their spatial distances.

3.4 Final Detection Pipeline and Training Losses

In this subsection, we describe the final detection process, which is done with
contextualized object representations from GNNs. To be specific, for each object,
we first concatenate the visual features f̂ conv

i from CNN layers and the graphi-

cal features f̂gnn
i from GNN layers in a channel-wise manner. Then, we forward

the concatenated features f̂∗
i = concat(f̂ conv

i , f̂gnn
i ) to the fully-connected lay-

ers to obtain the final class probability vector p̂∗i , which is similar to the class
prediction process in equation 1 for Faster R-CNN, while we use the differently
parameterized class prediction head cls head∗. That is defined as follows:

f̂∗
i = concat(f̂ conv

i , f̂gnn
i ),

p̂∗i = cls head∗(f̂∗
i ).

(4)

Note that one of the ultimate goals of our method is to improve the per-
formance on uncertain objects while maintaining high performance on certain
objects. Therefore, we additionally regulate the CrossEntropy loss based on the
input prediction’s uncertainty value: we give larger weights to objects with high
uncertainties so that the model could focus on those objects. To do so, we first
use the softmax function to normalize the weight values, and then multiply the
number of target objects Nnms to keep the scale of the loss: the sum of all wi

from i = 1 to N equals to the number of objects Nnms, as follows:

wi = softmax(ϕi)×Nnms,

=
exp(ϕi/τ)∑Nnms

j=1 exp(ϕj/τ)
×Nnms,

(5)

where τ denotes the temperature scaling value for weights. Then, based on the
loss weight for each object proposal, classification loss Lref from refined features
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consisting of CNN and GNN representations is defined as follows:

Lref =

Nnms∑
i

wi × CrossEntropy(p̂∗i , yi). (6)

The overall training loss is then defined by the initial and refined object
detection losses, Lobj and Lref , as follows: Ltotal = Lobj + λ2 × Lref , where λ2

is the scaling term for the last loss. Note that we refer our overall architecture
calculating Lref as Uncertainty-Aware Graph network for object DETection
(UAGDet), which is jointly trainable with existing object detection layers by
the final objective Ltotal, and easily applicable to any object detection networks.
In the test time, we apply NMS to the final object detection results to remain
only the most certain bounding boxes and their classes. Also, during evaluation,
we replace the initial detection results for uncertain objects associated with
target nodes with their final object detection results, while maintaining the initial
detection results for certain objects, to prevent the possible performance drop.

4 Experiments

In this section, we validate the proposed Uncertainty-Aware Graph network for
object DETection (UAGDet) for its object detection performance on the large-
scale Dataset for Object deTection in Aerial images (DOTA) [34].

4.1 Datasets

DOTA [34] is widely known as an object detection dataset in aerial images.
There are three versions of DOTA datasets, and we use two of them for evalu-
ation: DOTA-v1.0, and v1.5. Regarding the dataset statistics, DOTA-v1.0 con-
tains 2,806 large-size images from the aerial view, which are then processed to
have 188,282 object instances in total within 15 object categories. The 15 ob-
ject categories for classification are as follows: Plane (PL), Baseball-diamond
(BD), Bridge (BR), Ground track field (GTF), Small vehicle (SV), Large ve-
hicle (LV), Ship (SH), Tennis court (TC), Basketball court (BC), Storage tank
(ST), Soccer ball field (SBF), Roundabout (RA), Harbor (HB), Swimming pool
(SP), and Helicopter (HC). The number of instances per class is provided in
Table 1. DOTA-v1.5 uses the same images as in DOTA-v1.0, while extremely
small-sized objects and a new category named Container Crane (CC) are ad-
ditionally annotated. Therefore, DOTA-v1.5 contains 403,318 object instances
with 16 classes.

Note that the bounding box regression of the DOTA dataset is different from
the conventional datasets, which makes object detection models more challeng-
ing. Specifically, in conventional object detection datasets, such as COCO [26]
or Pascal VOC [9], the ground truth bounding box of each object is annotated
as (x, y, w, h) format. However, since objects have a wide variety of orientations
in aerial images, the ground truth bounding box in the DOTA [34] dataset is
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denoted as (x, y, w, h, θ) format, with an additional rotation angle parameter θ.
To reflect such an angle in the object detection architecture, RoITransformer [7]
uses additional fully-connected layers to regress additional parameter θ on top
of the Faster R-CNN architecture [29], which we follow in our experiments. For
model tuning and evaluation on the DOTA dataset, we follow the conventional
evaluation setups [7, 34, 8]. We first tune the hyperparameter of our UAGDet on
the val dataset while training the model on the train set. After the tuning is
done, we use both the train/val sets to train the model, and infer on the test set.
Inference results on the test set is uploaded to the DOTA evaluation server [34,
8], to measure the final performance. For evaluation metrics, we use the Average
Precision for each class result, and also the mAP for all results [34].

4.2 Experimental Setups

Baselines and Our Model. We compare our UAGDet with Mask R-CNN [18,
8], RoITransformer [7] and GFNet [36] models. Specifically, Mask R-CNN [18] is
applied to DOTA [34] by viewing bounding box annotations as coarse pixel-level
annotations and finding minimum bounding boxes based on pixel-level segmen-
tation results [8]. RoITransformer (RoITrans) [7] is based on Faster R-CNN [29]
with one additional FC layers in order to predict rotation parameter θ for ro-
tated bounding boxes. GFNet [36] uses GNNs to effectively merge dense bound-
ing boxes with a cluster structure, instead of using algorithmic methods such
as NMS or Soft-NMS [1]. Our UAGDet uses GNNs for object graphs composed
by objects’ uncertainties to improve uncertain object predictions with graph
representations, where we use RoITrans as a base object detection network.

Implementation Details. Regarding the modules for the architecture includ-
ing CNN backbone, RPN, and regression/classification heads, we follow the set-
ting of RoITrans [7]. The number of region proposals is set to 1,250. Based on
the objects’ uncertainties, we set top half nodes as source nodes while bottom
half nodes as target nodes. If Nnms is larger then 100, we only consider top 100
objects, and exclude the rest of highly uncertain objects that are likely to be
noise. We set the dropout ratio as 0.2, M for MC dropout as 50, λ1, λ2 for loss
weights as 1, thrspa for sparse graph generation as 50, and thrsem for semantic
graph generation as 10. The dimensionality of tensors in equation 3 is as follows:
f̂ conv
i ∈ R256×7×7, f̂down

i ∈ R128×7×7, and ĉi ∈ R16×7×7. For GNN layers, we use
two GCN layers [23] with LeakyReLU activation between them. Concatenated
feature fnode

i for each node is first fed into 1x1Conv for reducing its dimension
from R144×7×7 to R128×7×7, and then fed into GCN, where its dimension is further
reduced by 1/2 and 1/4 in two GCN layers, respectively, i.e., f̂gnn

i ∈ R16×7×7.
We set a temperature scale value τ in softmax of equation 5 as 0.1. The model
is trained for 12 epochs with a batch size of 4, a learning rate of 0.01, and a
weight decay of 10−4, and optimized by a SGD. We use 4 TITAN Xp GPUs.

4.3 Quantitative Results
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Table 1: Object detection results on DOTA-v1.0 and DOTA-v1.5 test datasets.
The CC (Container Crane) category only exists in DOTA-v1.5, thus we remain
the performance of it on DOTA-v1.0 as blank. Best results are marked in bold.

Models PL BD BR GTF SV LV SH TC BC ST SBF RA HB SP HC CC mAP

v1
.0

# of instances 14,085 1,130 3,760 678 48,891 31,613 52,516 4,654 954 11,794 720 871 12,287 3,507 822 -

Mask R-CNN 88.7 74.1 50.8 63.7 73.6 74.0 83.7 89.7 78.9 80.3 47.4 65.1 64.8 66.1 59.8 - 70.7
GFNet 90.3 83.3 51.9 77.1 65.5 58.2 61.5 90.7 82.1 86.1 65.3 63.9 70.6 69.5 57.7 - 71.6
RoITrans 87.9 81.1 52.9 68.7 73.9 77.4 86.6 90.2 83.3 78.1 53.5 67.9 76.0 68.7 54.9 - 73.4
UAGDet (Ours) 89.3 83.3 55.5 73.9 68.4 80.2 87.8 90.8 84.2 81.2 54.3 61.8 76.8 70.9 68.0 - 75.1

v1
.5

# of instances 14,978 1,127 3,804 689 242,276 39,249 62,258 4,716 988 12,249 727 929 12,377 4,652 833 237

Mask R-CNN 76.8 73.5 50.0 57.8 51.3 71.3 79.8 90.5 74.2 66.0 46.2 70.6 63.1 64.5 57.8 9.42 62.7
RoITrans 71.7 82.7 53.0 71.5 51.3 74.6 80.6 90.4 78.0 68.3 53.1 73.4 73.9 65.6 56.9 3.00 65.5
UAGDet (Ours) 78.4 82.4 54.4 74.1 50.7 74.2 81.0 90.9 79.3 67.0 52.3 72.8 75.8 72.4 65.3 15.4 68.0

Main Results. We report the performances of baseline and our models on
both DOTA-v1.0 and DOTA-v1.5 datasets in Table 1. As shown in Table 1, our
UAGDet largely outperforms all baselines on both datasets in terms of mAP, ob-
taining 1.7 and 2.5 point performance gains on DOTA-v1.0 and v1.5 datasets, re-
spectively against RoITrans baseline. The difference between the baseline model
and ours is more dramatic in the DOTA-v1.5 dataset, which matches our as-
sumption: our UAGDet is more beneficial in DOTA-v1.5 containing extremely
small objects since they get effective representations based on interaction in-
formation. Furthermore, our model outperforms GFNet [36], which first builds
instance clusters and then applies GNNs to learn comprehensive features of each
cluster, since we do not impose a strong assumption as in GFNet [36] that cluster
always exists in an image, and also we consider uncertainties of objects in the
graph construction and representation learning scheme. Note that our UAGDet
only uses 1,250 proposals instead of 2,000 for computational efficiency and no
augmentation is applied, thus we believe further performance gains could be
easily achieved by additional computation if needed, for real-world applications.

Ablation Study. To see where the performance gain comes from, we conduct
an ablation study on the DOTA-v1.0 dataset, and report the results in Table
2. In particular, we ablate two components of our UAGDet: node and edge

Table 2: Results of an
ablation study on the
DOTA-v1.0 dataset.

Models mAP

UAGDet (Ours) 75.1
w/o Complex Feature 73.9
w/o Uncertainty-scaled Loss 74.7

features in GNNs; uncertainty-scaled loss in equa-
tion 5. At first, we only use the CNN feature maps
as node features, instead of using initially predicted
class embedding for nodes and pairwise spatial dis-
tances for edges, and we observe the large performance
drop of 1.2 point. Furthermore, we do not use the
uncertainty-scaled loss for training but rather use the
naive CrossEntropy loss, and we observe the perfor-
mance drop of 0.4 point. Those two results suggest
that, using complex features in GNN layers, as well as
applying uncertainty-aware losses for focusing on un-
certain objects help improve the model performances.
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Fig. 2: Visualization of Objects with Uncertainties. We visualize detected
objects with lowest, intermediate, and highest uncertainties in left, center, and
right parts. The larger the uncertainties, more inaccurate detection results are.

4.4 Analyses

Defining Target Objects by Uncertainty. Fig. 2 illustrates initially detected
objects along with their uncertainties. As shown in Fig. 2, detected objects with
the lowest uncertainties are accurate, whereas, objects with the highest uncer-
tainties are completely wrong. Therefore, we only target objects with medium
uncertainties, which are neither perfectly detected, nor totally wrong. We can
take two advantages when focusing on improving uncertain objects: computa-
tional efficiency and performance gain. To analyze this, we compare our UAGDet
to SGRN [35], which builds a context graph among objects for contextualizing
them. Specifically, in SGRN [35], 50 edges per node are generated for every de-
tected object. However, if SGRN [35] is applied to DOTA [34] with 1,250 initial
object proposals, resulting graph contains 50×1250 edges for considering all ob-
jects’ pair-wise interactions. Compared to such an approach, our UAGDet always
generates 50×50 edges as a maximum under its analytical form, and usually gen-
erates between 50 to 1,000 edges in most cases. This is because we define the
direction of edges only from source to target nodes, which results in much sparser
graphs having advantages in terms of time and memory efficiency. Furthermore,
we observe that uncertainty-aware graphs with edges from certain nodes to un-
certain nodes are more valuable than pair-wise edges between all nodes in terms
of performance. In particular, we compare the performances of two models –
73.1% for all pair-wise interactions, whereas 75.1% for our uncertainty-based
interactions, on which we observe that ours largely outperforms the baseline.
Also, the model with pair-wise edges among all nodes (73.1%) underperforms
the RoITrans [7] baseline (73.4%) that does not leverage the relational knowledge
between objects. This result confirms that information propagation from uncer-
tain objects to certain objects can harm the original detection results, which we
prevent by constructing the bipartite directed graph.

Spatial and Semantic Edges in Graphs. We use both the spatial and se-
mantic similarities to decide if two nodes are related enough to be connected
in a graph structure. As depicted in Fig. 3, we observe that spatial and seman-
tic distances play different roles when building a context graph. In particular,
spatial distance measure is used to capture relationships within nearby objects.
However, it is suboptimal to only consider geometric distances between objects
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Fig. 3: Visualization of Generated Object Graphs. First and third images
show edges generated by a spatial distance, while second and last images show
edges generated by a semantic distance.

for contextualizing various objects in the image (e.g., two planes located far away
are not connected to each other in Fig. 3 only with spatial distances). Thus,

Table 3: Results
of spatial-only and
semantic-only graph.

Models mAP

Ours (Both Distances) 75.1
Spatial Distance Only 74.6
Semantic Distance Only 73.9

for this case, considering semantic distance helps a model
to capture semantically meaningful relationships even
though objects are located far from each other, for ex-
ample, tennis courts and planes in Fig. 3. Experimentally,
we observe that the model shows 74.6% and 73.9% perfor-
mances in terms of mAP, when using spatial and semantic
distances independently, which is shown in Table 3. Note
that those two results are lower than the performance of
75.1% which considers both spatial and semantic distances
for edge generation. Therefore, such results empirically
confirm that both spatial and semantic edges contribute
to the performance gains, which are in a complementary
relationship when contextualizing objects in the image.

5 Conclusion

In this work, we proposed an Uncertainty-Aware Graph network for object DE-
Tection (UAGDet), a novel object detection framework focusing on relationships
between objects by building a structured graph while considering uncertainties
for representing and refining object features. In particular, we first pointed out
the importance of object-level relationship which is largely overlooked in existing
literature and then proposed to leverage such information by building an object
graph and utilizing GNNs. Also, we considered uncertainty as a key factor to
define the relationship between objects, where we transferred knowledge from
certain objects to uncertain ones, refined only the uncertain object features, and
regulated the loss value based on the uncertainty, for improving uncertain object
predictions. Experimentally, our method obtained 2.32% and 3.82% performance
improvements in the DOTA dataset.
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