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Abstract. State-of-the-art unsupervised representation learning meth-
ods typically do not exploit the physical properties of objects, such as
geometry, albedo, lighting, and camera view, and, when they do, multi-
view images are often needed for training. We show that de-rendering,
a way to reverse the rendering process to recover these properties from
single images without supervision, can also be used to learn task-agnostic
representations, which we dub physically disentangled representations
(PDRs). While de-renderers predict distinct physical properties, the fea-
tures learned in the process may not be disentangled. To ensure mean-
ingful features are encoded by de-rendering and thus prevent overreliance
on decoders, we propose a novel Leave-One-Out, Cycle Contrastive loss
(LOOCC) to improve feature disentanglement w.r.t. physical proper-
ties, which leads to higher downstream accuracy. We evaluate PDRs on
downstream clustering tasks, including car classification and face identi-
fication. We perform a comparison of our method with other generative
representation learning methods for these tasks and find PDRs consis-
tently yield higher accuracy, outperforming evaluated baselines by as
much as 18%. Code is available here.

1 Introduction

Unsupervised representation learning (RL) is a long-standing goal in the com-
puter vision community, but many methods do not consider the 3D nature of
objects. Generative methods, such as as variational autoencoders (VAEs) [9] and
generative adversarial networks (GANs) [6], have been shown to learn semanti-
cally disentangled features [1,2], but using a renderer to capture and disentangle
the features of physical properties, such as geometry, albedo, lighting, and cam-
era view, is less studied. We propose a way to learn and disentangle the features
of physical properties of objects, such as cars and faces, from single-view images
with de-rendering and show the use of these features for downstream 2D tasks.

Whereas rendering yields images from scene properties, called scene param-
eters, de-rendering, a.k.a inverse rendering, enables scene parameters to be pre-
dicted from images. By leveraging available priors, synthetic data, or implicit
cues, such as symmetry, de-rendering can be learned without supervision, and
thus we show can be used for RL. Information on related work is in the supp.

In this paper, we adopt existing de-rendering methods to learn physically dis-
entangled representations (PDRs) of two categories of objects - faces and cars.

https://anonymous.4open.science/r/physically-disentangled-representations-3BB2/README.md
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We show our learned representations, while task-agnostic, have utility across a
wide-range of downstream tasks, suggesting physically-meaningful features are
useful for semantic tasks. We first introduce a general framework for RL us-
ing de-rendering. While de-renderers disentangle scene parameters, there is no
guarantee that the feature space is also disentangled, or that the encoders, and
not the decoders, have learned physical properties. Thus, we then propose a loss
term called Leave-One-Out, Cycle Contrastive loss (LOOCC) to improve dis-
entanglement in the feature space. LOOCC applies contrastive learning to the
features of images and their physically augmented counterparts, generated by
a renderer. By generating augmented images with only a single changed scene
parameter, we can then enforce that features of other scene parameters remain
unchanged. Finally, we evaluate our method on clustering, which highlights the
utility of our raw features without additional, task-specific learning
and is frequently used for representation learning [11,12,14,18,19]. We show im-
proved performance over baselines on car classification and face identification.
In summary, we make the following contributions:

– A novel objective called Leave-One-Out, Cycle Contrastive loss (LOOCC)
that improves encoding of de-renderers by disentangling the features of phys-
ical scene parameters such that they are more useful for downstream tasks.

– Empirical results showing the utility of our learned features for clustering
on car classification and face identification.

2 Proposed Method

2.1 Learning Representations by De-Rendering

We use de-rendering as a mechanism to learn feature representations that are
disentangled with regard to the physical scene parameters modeled by the ren-
derer. We leverage the work of Wu et al. [17] for de-rendering. The de-renderer
is composed of a set of encoders Eθ, which each take an image x to a feature,
geometry, albedo, light, or camera. The output of each encoder is used to train
a decoder Dθ to predict the corresponding scene parameter. Predicted light val-
ues (1 × 4) embed ambient and diffuse intensity, pitch, and yaw, while camera
values embed camera rotation and translation in x, y, and z (1 × 6). Both the
encoders and decoders are parameterized by neural networks. While Eθ predicts
physically disentangled features, their explicit counterparts, scene parameters,
are predicted by each decoder Dθ. The scene parameters are then fed into a
differentiable renderer (NMR) [8]. The NMR is responsible for constraining the
encoder-decoders by reconstructing the input image x.

We extract features from the last conv layer of each encoder for use on
downstream tasks. In this work, we only utilize geometry and albedo features for
downstream tasks because they capture the most information about the scene.

2.2 Leave-One-Out, Cycle Contrastive Loss

Disentangling scene parameters without supervision is a challenge in de-rendering.
We propose a Leave-One-Out, Cycle Contrastive loss (LOOCC) to improve dis-
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entanglement as illustrated in Figure S.1 of the supp. material. Our method
consists of physical augmentation, cyclic encoding, and contrastive learning.

Physical Augmentation: In addition to reconstructing x, our method gener-
ates an augmented image of the scene, xrecon

aug , by randomly perturbing a pre-
dicted scene parameter, Spxaug

. Since the light and camera parameters are rep-
resented as four and six dimensional vectors, respectively, they can be perturbed
by sampling a uniform distribution bounded by the desired range of each value.
We randomly perturb light or camera while keeping other parameters the same,
and use NMR to render the augmented image.

Cyclic Encoding: We leverage the observation that if we reconstruct an aug-
mented image xrecon

aug from Spxaug
, it should differ from x only by one scene

parameter. The augmented image can then cycle back through Eθ, generating a
set of augmented features that should be the same as the features of x, except
for the features of the perturbed param.

Leave-One-Out Contrastive Loss: We leave out the features of the single
perturbed scene parameter and use the contrastive loss proposed by [4] to enforce
that the rest of the features in x and xrecon

aug are similar, and thus that perturbing
one scene parameter does not impact the features for the rest. Our intuition is
that by leaving out one set of features, we allow these features in x and xrecon

aug to
be pushed apart, while the contrastive loss pulls the rest of the features together.
We arrive at the following equation for the contrastive loss. We denote ZU

x and
ZU
xaug

to be all the features of the corresponding unchanged scene parameters
from x and xrecon

aug , respectively, leaving out the features that were perturbed.

Lcont(Z
U
x , ZU

xaug
) =

exp(sim(ZU
x , ZU

xaug
))∑2N

k=1 exp(sim(ZU
x , ZUk

x )/τ)
(1)

In Eqn. 1, sim measures cosine similarity of two feature vectors, N is the mini-
batch size of the input, and τ is the temperature parameter.

Total Loss: We define the total loss as a weighted sum of the reconstruction and
LOOCC loss terms (Eqn. S.1 in supp.). In our work, we utilize the reconstruction
loss proposed by Wu et al. [17], but any reconstruction loss can be used.

3 Experiments

In this section, we share our datasets and results. We compare the features
learned by de-rendering with [17] (Unsup3D) with those learned with LOOCC.
Other baselines are VQ-VAE (best of the VAEs we tested), StyleGAN2 (inversion
done with [15]), and Retrieve in Style (RIS). Metrics are described in the supp.

3.1 Datasets

Training: We train two sets of models with our proposed method. Our face
models are trained on the UTK Face dataset [20], containing 23,708 images,
and we use an 80/10/10 split for train, validation, and test. Our car models are
trained on the ShapeNet [3] cars dataset rendered by [17], consisting of 28k train
images, 7k validation images, and 7k test images.
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Method Dataset Cluster Accuracy F1-Score

VQ-VAE (NeuRIPS’17) [16] BBT 0.4168 0.2796
StyleGAN2 (CVPR’20) [7] BBT 0.4261 0.3528
RIS (ICCV ’21) [5] BBT 0.4790 0.4346
Unsup3D (CVPR ’20) [17] BBT 0.5754 0.4572
Ours - Light Only BBT 0.6252 ↑ 0.6133 ↑
Ours - Light + View BBT 0.6096 0.5669

VQ-VAE (NeuRIPS ’17) [16] ShapeNet 0.4915 0.3696
Unsup3D (CVPR ’20) ShapeNet 0.5100 0.3877
Ours - Light Only ShapeNet 0.5270 0.4016
Ours - Light + View ShapeNet 0.5485 ↑ 0.4995 ↑
Table 1: Clustering results for face identification and car classification. Our method us-
ing Leave-One-Out, Cycle Contrastive loss (LOOCC) outperforms the baselines. Light
indicates light augmentation and Light + View indicates light & view augmentation.

Testing: We use Big Bang Theory (BBT) [13] for identification and a subset of
the ShapeNet cars test dataset mentioned above for car classification.

3.2 Face Identification

We demonstrate the utility of our learned representations on the challenging task
of video face clustering. We use BBT season 1, episode 1 as prepared by [11].
As in prior work [10,11], clustering is done on a per-track basis by averaging the
features of each frame in the track. Our BBT dataset contains 644 tracks and
five identities. Our model outperforms all baselines for clustering accuracy and
F1 on BBT. Incorporation of the LOOCC loss is especially helpful since it im-
proves disentanglement and thus robustness to lighting and viewpoints (omitted
features), which are challenging in this dataset.

3.3 ShapeNet Car Classification

We utilize ShapeNet car data rendered by [17] to evaluate car classification. For
each test image, we extract the car name from the ShapeNet metadata and test
on five classes: police car, ambulance, limousine, jeep, and Ferrari. The test set
contains 1000 images, each rendered with random lighting and viewpoint. We
compare our proposed method with VQ-VAE, but not StyleGAN2 or RIS due
to lack of synthetic car pre-trained models. Despite the VQ-VAE model having
a much larger latent space, our method yields higher accuracy and F1.

4 Discussion

We observe that our method improves physical disentanglement. The learned
features are predictive of scene parameters, which themselves are disentangled
and can be rendered to form an image. We compute Pearson’s correlation coeffi-
cient (PCC) between each combination of the four learned physical features, both
with and without our LOOCC loss. Not only do results indicate low correlation
between features, but also that LOOCC further reduces correlation. Without
LOOCC, the features have a mean PCC of 0.26 on the BBT dataset, whereas,
with LOOCC, mean PCC is 0.18. In conclusion, we have presented a method to
learn physically-meaningful features without multi-view images or ground truth.
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