
Inductive Biases for Object-Centric
Representations in the Presence of Complex

Textures

Samuele Papa1, Ole Winther2,3, and Andrea Dittadi2,4

1 POP-AART Lab, University of Amsterdam & The Netherlands Cancer Institute
s.papa@uva.nl

2 Technical University of Denmark
3 University of Copenhagen & Copenhagen University Hospital

4 Max Planck Institute for Intelligent Systems, Tübingen, Germany

Abstract. Understanding which inductive biases could be helpful for
the unsupervised learning of object-centric representations of natural
scenes is challenging. In this paper, we systematically investigate the
performance of two models on datasets where neural style transfer was
used to obtain objects with complex textures while still retaining ground-
truth annotations. We find that by using a single module to reconstruct
both the shape and visual appearance of each object, the model learns
more useful representations and achieves better object separation. In
addition, we observe that adjusting the latent space size is insufficient
to improve segmentation performance. Finally, the downstream useful-
ness of the representations is significantly more strongly correlated with
segmentation quality than with reconstruction accuracy.
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1 Introduction

A core motivation for object-centric learning is that humans interpret complex
environments such as natural scenes as the composition of distinct interacting
objects. Evidence for this claim can be found in cognitive psychology and neu-
roscience [33, 34, 37, 6]. Current object-centric learning approaches try to merge
the advantages of connectionist and symbolic methods by representing each ob-
ject with a distinct vector [17]. The problem of object separation becomes central
for unsupervised methods that can only use the data itself to lean how to iso-
late objects. Several methods have been proposed to provide inductive biases
to achieve this objective [5, 12, 27, 11, 24]. However, they are typically tested on
simple datasets where objects show little variability in their texture, often being
monochromatic. This characteristic may allow models to successfully separate
objects by relying on low-level characteristics, such as color [16], over more de-
sirable high-level ones, such as shape.
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Fig. 1: Left: samples from the original datasets. Right: samples from the same datasets
with neural style transfer.

Research in the direction of natural objects is still scarce [22, 13, 24], as such
datasets often do not provide exhaustive knowledge of the factors of variation,
which are very rich in natural scenes. In this context, unsupervised methods
struggle to learn object-centric representations, and the reason for this remains
unexplained [16, Section 5].

In this paper, we conduct a systematic experimental study on the inductive
biases necessary to learn object-centric representations when objects have com-
plex textures. To obtain significant and interpretable results, we focus on static
images and use neural style transfer [15] to apply complex textures to the objects
of the Multi-dSprites [21] and CLEVR [20] datasets, as shown in Fig. 1. This
makes the task significantly more challenging while still preserving all the ad-
vantages of a procedurally generated dataset, and avoiding the above-mentioned
pitfalls of natural datasets.

We investigate MONet [5] and Slot Attention [27], two popular slot-based
autoencoder models that learn to represent objects separately and in a common
format. The latter obtains object representations by applying Slot Attention to
a convolutional embedding of the input, and then decodes each representation
into shape and visual appearance via a single component. In contrast, MONet
reconstructs them with two components: a recurrent attention network that
segments the input, and a variational autoencoder (VAE) [23, 31] that separately
learns a representation for each object by learning to reconstruct its shape and
visual appearance. Unlike in Slot Attention, the shape reconstructed by the
VAE is not used to reconstruct the final image; instead the shape from the
recurrent attention network is used. To still have shape information in the latent
representation of the VAE, the training loss includes a KL divergence between
the mask predicted by the VAE and the one predicted by the attention network.
Therefore shape and visual appearance are, in effect, separate unless the KL
divergence provides a strong enough signal.

For this study, we posit two desiderata for object-centric models, adapted
from [8]:

Desideratum 1. Object separation and reconstruction. The models should
have the ability to accurately separate and reconstruct the objects in the input,
even those with complex textures. For the models considered here, this means
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that they should correctly segment the objects and reproduce their properties
in the reconstruction, including their texture.

Desideratum 2. Object representation. The models should capture and rep-
resent the fundamental properties of each object present in the input. When
ground-truth properties are available for the objects, this can be evaluated via
a downstream prediction task.

We summarize our main findings on the two models analyzed as follows:

1. Models that better balance the importance of both shape and visual appear-
ance of the objects seem to be less prone to what we call hyper-segmentation
(see Section 3). We show how this can be achieved with an architecture that
uses a single module to obtain both shape and visual appearance of each
object. When this is not the case, it becomes significantly more challenging
for a model to correctly separate objects and learn useful representations.

2. Hyper-segmentation of the input leads to the inability of the model to ob-
tain useful representations. Separation is a strong indicator of representation
quality.

3. The representation bottleneck is not sufficient to regulate a model’s ability
to segment the input. Tuning other hyperparameters such as encoder and
decoder capacity appears to be necessary.

2 Methods

Datasets and models. Similarly to [8], we use neural style transfer [15] to
increase the complexity of the texture of the objects in the Multi-dSprites and
CLEVR datasets (see Appendix B for details). This allows for textures that have
high variability but are still correlated with the shape of the object, as opposed
to preset patterns as done in [16] and [22] or completely random ones. We apply
neural style transfer to the entire image and then select the objects using the
ground-truth segmentation masks (see Fig. 1). Keeping the background simple
allows for a more straightforward interpretation of the models’ performance. As
object-centric models, we consider MONet [5] and Slot Attention [27], chosen
because they implement very distinct mechanisms to solve the the problem of
separation (see Section 1).

Evaluation. Following the two desiderata in Section 1, we separately focus on
the separation, reconstruction, and representation performance of the models:

– Separation is measured by the Adjusted Rand Index (ARI) [18], which quan-
tifies the similarity between two partitions of a set.

– Reconstruction is measured using the Mean Squared Error (MSE) between
input and reconstructed images.

– Representation is measured by the performance of a simple downstream
model trained to predict the properties of each object using only the ob-
ject representations as inputs. Following previous literature [27, 8], we match
ground-truth objects with object representations such that the overall loss
is minimized.
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Performance studies. The baseline performance of the models on the style
transfer datasets is established using the hyperparameters from the literature.
We then vary parameters and architectures to improve performance. In MONet,
we reduce the number of skip-connections of the U-Net in the attention module,
we change the latent space size, the number of channels in the encoder and
decoder of the VAE, and the β and σ parameters in the training objective. In Slot
Attention, we increase the number of layers and channels in both encoder and
decoder and increase the size of the latent space. For both models, we investigate
how the latent space size alone affects performance. We use multiple random
seeds to account for variability in performance when feasible (see Appendix E
for further details).

(a) MONet, baseline. (b) MONet, best model.

(c) Slot Attention, baseline. (d) Slot Attention, best model.

Fig. 2: Reconstruction and separation performance on Multi-dSprites (from the vali-
dation set). From left to right in each subfigure: original input, final reconstruction,
and product of the reconstruction and mask for each of the six slots. The improved
architecture for Slot Attention splits objects less often. MONet still fails to separate
objects correctly although it blurs the reconstructions. See Fig. 13 (Appendix G) for
similar results on CLEVR.

3 Experiments

Architectural biases. Qualitatively, the MONet baseline (Fig. 2a) segments
primarily according to color, resulting in each slot encoding fragments of multi-
ple objects that share the same color. We call this behavior hyper-segmentation.
On the other hand, the Slot Attention baseline (Fig. 2c) produces blurred re-
constructions and avoids hyper-segmentation. Here, some objects are still split
across more than one slot but, unlike in MONet, we do not observe multiple ob-
jects that are far apart in the scene being (partially) modeled by the same slot.
We observe this quantitatively in Fig. 4 (top): compared to the Slot Attention
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baseline, the MONet baseline has a significantly worse ARI score but a consid-
erably better MSE. Fig. 13 in Appendix G shows similar results on CLEVR.

These observations can guide our search for better model parameters. Slot
Attention is blurring away the small details of the texture and focuses on the
shape to separate them. MONet, instead, achieves good reconstructions but does
so by using the attention module to select pixels that share the same color, as
opposed to entire objects, while the VAE simply reconstructs plain colors (see
Appendix G for more details). Therefore, for MONet we attempt to sacrifice
some reconstruction quality in exchange for better object separation. For Slot
Attention, we investigate whether improving the reconstructions negatively af-
fects object separation. We refer to Appendix E for further details and results
on the hyperparameter search for MONet and Slot Attention.

Fig. 3: Qualitative results for the reconstruction of the visual appearance of the objects
on Multi-dSprites (from the validation set). In each of the 4 groups, we show the input
(leftmost image) and the reconstruction of the visual appearance from each of the six
slots, before masking. Top row: MONet; bottom row: Slot Attention; left: baselines;
right: models with best hyperparameters. MONet primarily reconstructs plain colors
with little to no regard to objects, while Slot Attention consistently separates objects
even in the presence of textures. In Fig. 13 (Appendix G), we show similar results on
CLEVR. See also Fig. 12 for results on additional images from Multi-dSprites.

When qualitatively looking at the results obtained by the hyperparameter
search performed for MONet, we notice a consistent inability of the “component
VAE” to capture different characteristics other than simple colors (see Fig. 3 and
Fig. 13), even when strongly penalizing the VAE for reconstructing shapes that
are inconsistent with the masks computed by the recurrent attention network
(which are directly used for reconstruction). We now discuss the results obtained
using the combination of hyperparameters that achieves the best performance,
called best model. In Fig. 2b, we see that MONet still hyper-segments even though
the reconstructions are now blurred. For Slot Attention (Fig. 2d), we observe that
the quality of reconstructions has improved, and it more often represents an
entire object in a single slot. Although the ARI for MONet has also improved,
the separation problem is still far from solved, while Slot Attention shows a
significant improvement both in terms of ARI and MSE (see two uppermost
plots in Fig. 4). Note how, for Slot Attention, the ARI is significantly lower
in Multi-dSprites, when compared to CLEVR. The likely reason is that, when
a significant portion of an object is occluded by another, the visible shape is
being altered significantly and the edges of objects are not clear. Therefore, two
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explanations of the same scene can still be reasonable while not corresponding
to the ground truth. This extreme overlap never occurs in CLEVR.

Overall, even when MONet sacrifices reconstruction quality and blurs away
the details, hyper-segmentation is still present as evidenced by our qualitative
and quantitative analyses. This suggests that the separation problem in MONet
may not simply be caused by the training objective, but rather by its architec-
tural biases. Indeed, improving the reconstruction performance of Slot Attention
has, instead, yielded both better separation and more detailed reconstructions,
suggesting that generating shape and appearance using a single module is a more
favorable inductive bias for learning representations of objects with complex tex-
tures.

Fig. 4: Median performance of the different seeds trained for each of the indicated
models (error bars denote 95% confidence intervals). Top: ARI (↑) and MSE (↓) for
each dataset and model. Bottom: performance of the downstream model on each feature
of the objects. Accuracy is used for categorical features and R2 for numerical features.
A random guess baseline is shown in purple.

Fig. 5: Rank correlation of the ARI and MSE scores with downstream property pre-
diction performance. Correlations are computed over all the models trained with that
dataset in our study.

Representation performance. To understand the interplay between separa-
tion and learned representations, we explore the performance on a downstream
property prediction task that was trained using the object representations as
inputs (see Appendix C.1 for details). From Fig. 4, we observe how MONet
fails to capture some of the properties in the representations and consistently
performs worse than Slot Attention, for both the baseline and the improved ver-
sions. This suggests that, as highlighted in [8], a model that is not capable of
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correctly separating objects will also fail to accurately represent them. The trend
is also clear from Fig. 5, which shows that a higher ARI score strongly correlates
with an increased performance of the downstream model on all object proper-
ties. The correlation with MSE is much weaker, which highlights how strong
visual reconstruction performance is not the ultimate indicator for good object
representations. This result does not contradict previous findings [8] as here the
properties we expect the downstream model to predict have little to do with the
texture of the object and, therefore, the model can have poorer reconstructions
while still obtaining useful representations.

Fig. 6: The ARI (↑) and MSE (↓) show no significant change across latent space sizes,
supporting that the representation bottleneck (see main text) is not a sufficient induc-
tive bias for object separation. Training instability can be seen in Slot Attention with
latent size above 128. Two seeds for each latent size are used. Shown are mean (line)
and 95% confidence interval (shaded area).

Representation bottleneck. Here, we investigate how the size of the repre-
sentation bottleneck (see Appendix A) affects performance. In Fig. 6, we observe
that the MSE improves slightly and quickly plateaus for both MONet and Slot
Attention when the latent space size increases. However, the ARI does not sig-
nificantly change even with increased latent size. The increase in latent space
size arguably increases the model’s capacity, but it does not prove to be enough
to improve the separation and reconstruction performance significantly.

4 Related work

Learning representations that reflect the underlying structure of data is believed
to be useful for downstream learning and systematic generalization [4, 25, 17].
While many recent empirical studies have investigated the usefulness of disen-
tangled representations and the inductive biases involved in learning them [26,
36, 35, 29, 9, 10], analogous experimental studies in the context of object-centric
representations are scarce. The study by [11] presents an investigation into in-
ductive biases for object separation, focusing on one model and traditional syn-
thetic datasets. In this work, we study hyper-segmentation on datasets where
objects have complex textures. [22] recently proposed ClevrTex, a dataset that
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introduces challenging textures to scenes from CLEVR [20]. The experiments
reported show that, without any tuning, some models fail to segment complex
scenes by focusing on colors. The authors, similarly to what we highlighted in
this work, state that “ignoring confounding aspects of the scene rather than
representing them might aid in the overall task [of segmentation].” In our work,
we investigate the mechanism behind the ability of some models to ignore su-
perfluous details and more successfully segment the image, proposing a useful
inductive bias to achieve better object representations.

Recently, works that propose new object-centric learning methods also in-
clude evaluations on more complex datasets. [16] train IODINE on Textured
MNIST and ImageNet, and observe that the model separates the image primar-
ily according to color when the input is complex. GENESIS-V2 [13] was trained
on Sketchy and APC, two real-world robot manipulation datasets. However, the
authors do not explore the mechanism behind the performance of the models
they tested, and do not attempt to optimize the architectures. In the video do-
main, [24] include evaluations on a dataset with complex textures, training their
model to predict optical flow rather than a reconstruction of the input.

5 Conclusions

In this paper, we have investigated which inductive biases may be most useful for
slot-based unsupervised models to obtain good object-centric representations of
scenes where objects have complex textures. We found that using a single module
to reconstruct both shape and visual appearance of objects naturally balances
the importance of these two aspects in the generation process, thereby avoiding
hyper-segmentation and achieving a better compromise between precise texture
reconstructions and correct object segmentation. Therefore, our recommenda-
tion is that models should have separation as an integral part of the represen-
tation process. Additionally, we showed that separation strongly correlates with
the quality of the representations, while reconstruction accuracy does not: this
justifies sacrificing some reconstruction quality. Finally, we observed that the
representation bottleneck is not a sufficient inductive bias, as increasing the la-
tent space size can be counterproductive unless the model is already separating
the input correctly.

Although the models considered in our study have been shown strong per-
formance on this type of data, it would be interesting to explore if the same
conclusions hold for other models that approach the problem in a similar way,
such as GENESIS, IODINE, and GENESIS-V2, as well as methods based on spa-
tial slots, such as SPAIR or SPACE. Another interesting avenue for future work
is to extend our study to more complex downstream tasks involving abstract
reasoning, e.g., in a neuro-symbolic system, where symbol manipulation can be
performed either within a connectionist framework [14, 32, 3] or by purely sym-
bolic methods [1, 28, 7]. Finally, it would be relevant to validate our conclusions
on additional datasets, and to introduce objects with varying texture complexity,
as this could require different model capacities to achieve separation [11].
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Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran
Associates, Inc. (2019)

31. Rezende, D.J., Mohamed, S., Wierstra, D.: Stochastic backpropagation and ap-
proximate inference in deep generative models. arXiv preprint arXiv:1401.4082
(2014)

32. Smolensky, P.: Tensor product variable binding and the representation of symbolic
structures in connectionist systems. Artificial intelligence 46(1-2), 159–216 (1990)

33. Spelke, E.S.: Principles of object perception. Cognitive Science 14, 29–56 (1990).
https://doi.org/10.1016/0364-0213(90)90025-R



Inductive Biases for Object-Centric Representations of Complex Textures 11
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A Remarks on notation

The term representation bottleneck should not be confused with the reconstruc-
tion bottleneck introduced by [11]. The representation bottleneck refers to the
small size of the latent space, while the reconstruction bottleneck refers to how
easy it is for the model to reconstruct the data. In [11], the reconstruction bottle-
neck is posited to be the reason behind the models’ inability to separate objects
into different slots.

Often, in the paper, we refer to object-centric representations and slots as
synonyms, although this is only true for slot-based models.

The term hyper-segmentation refers to when a model splits the input into
different slots with little to no regard to high-level characteristics of the input,
such as the shapes of objects, and instead just uses low-level characteristics,
primarily color. This often results in slots that consist of small clusters of pixels
with similar color, which means that several objects can be partially represented
in the same slot and at the same time each object may be partially represented in
multiple slots. This phenomenon is distinct from over-segmentation [12], where
multiple slots may reconstruct a single object but no slot reconstructs (parts of)
multiple objects. Examples are shown in the main text of the paper (see Fig. 2b
and Fig. 2b), where MONet is hyper-segmenting the input, while Slot Attention
is sometimes over-segmenting it.

B Datasets

The original versions of both datasets are taken from [21].

CLEVR. The CLEVR dataset consists of 3D objects placed on a gray back-
ground at different distances from the camera. Overlap between objects is kept
to a minimum. There are spheres, cylinders, and cubes of eight different colors.
The objects can be metallic of opaque. There is a big and small variant of each
object and they can be placed in several different orientations. We use the vari-
ant of the dataset that has no more than 6 objects in it, as was done in previous
object-centric learning research. The total number of samples in the training
dataset is 49483, and we leave 2000 samples for validation and 2000 samples for
testing.

Multi-dSprites. The Multi-dSprites dataset places several 2D objects on a grayscale
background. The objects can be a square, an ellipse, or a heart. They can have
any RGB color, orientation, and different levels of overlap. Here, we use 90000
samples for the training, 5000 for validation, and 5000 for testing.

Neural Style Transfer. Neural Style Transfer was applied in its most basic form
[19] except for a few additions to make running it on several datasets easier.
We opted to use The Starry Night by Dutch painter Vincent Van Gogh as a
reference style image (we used the photo from Wikimedia Commons, which is in
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the public domain). We experimented with several parameters, and we noticed
a lot of variability between runs and a more pleasant result from the most basic
implementation of the algorithm.

The final version of the datasets was obtained by first applying neural style
transfer to each image (optimization happens on an image-to-image basis). This
results in the entire scene having the style of the reference image. After obtaining
the neural style transfer version of the image, we applied the original segmenta-
tion masks of the objects to obtain an image where only the foreground objects
have a complex texture, while the background remains the original one.

(a) Samples original Multi-dSprites. (b) Samples style transfer Multi-dSprites.

(c) Samples original CLEVR. (d) Samples style transfer CLEVR.

Fig. 7: Samples from the original and neural style transfer datasets.
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C Evaluation

C.1 Downstream feature prediction task

The setup for the feature prediction task is the same as the one used in [8].
The models used are a simple linear model and an MLP with one hidden layer
having 256 neurons and enough outputs to predict all of the features of an object.
The input to the model is the object representation of a single object and the
output is the predicted features for that object. Let r be the representation of an
object, M the model, ŷ = M(r) is the output of the model, and y is the target
vector such that yik:ik+1

is the kth feature of the object, a vector of dimension
(ik+1−ik+1). We use the MSE loss for numerical features and the cross-entropy
loss for categorical ones.

Now, it is important to note that, in order to correctly train the model, the
representation r needs to be matched with the target vector y of the object
that r is representing. However, this is very challenging, as the models can rep-
resent any object in any of the slots. Therefore, following [8], we adopted two
different strategies to match slots with objects. The first is called loss matching :
The loss for each pair of slot and object is computed, resulting in a loss ma-
trix L, where Li,j is the loss between the predicted features from the jth slot
and the target features from the ith object in the scene. Then, the Hungarian
matching algorithm is used to find the pairs of slots-objects that minimize the
sum of the loss. The second approach is called mask matching : The masks pre-
dicted by the models and the ground masks are matched, to find the pairs that
have the smallest difference. By using loss matching, the assumption is that the
initial errors that are inevitable (because the downstream model has not been
trained yet) will eventually disappear. When using mask matching, this prob-
lem disappears, however, we rely on the ability of the models to generate masks
that closely match the ground truth, which is not the case for models that are
hyper-segmenting the input, as is often the case in our study.

C.2 ARI and MSE

We use the standard definitions of Adjusted Rand Index (ARI) and Mean Square
Error (MSE).

The ARI, as the name suggests, is the Adjusted version of the Rand Index.
The Rand Index is defined as follows. Given a set of n elements S and two
partitions A and B of this set, the Rand Index looks at the number of pairs of
elements from S and what set they belong to in the two partition. The definition
is the following:

R :=
m11 +m00

m11 +m00 +m10 +m01
,

where m11 is the number of pairs that are in the same set in both A and B,
m00 the number of pairs that are in different sets in both partitions, m10 the
number of pairs that are in the same set in A but different sets in B, and m01

counts how many pairs are in different sets in A but the same set in B.
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Then, the ARI normalizes and corrects the bias from the Rand Index based
on a given null hypothesis [18], such that an ARI of 0 results from completely
random partitions of the set, while 1 when the two partitions coincide.

It is important to highlight that the ARI is dependent on the size of the
partitions and the number of elements present in each set of the partition, which
are both assumed to not change across the entire dataset, which is not always
true for the current application.

The MSE is computed between each channel in each pixel of the image,
following the traditional formula.

D Implementation of the models

The models were re-implemented in PyTorch [30] and run on NVIDIA A100 or
NVIDIA TitanRTX GPUs. The total approximate training time to reproduce
this study is 300 GPU days.

E Hyperparameter searches

E.1 Baselines

The baselines were obtained by training the models on the two datasets with
3 different seeds. The parameters are taken from the original papers, but for
MONet we use different values for the foreground and background sigma, as
suggested by [16]. We stopped the training for all runs in our study, even the
ones described later, to 500k steps.

E.2 Improving MONet

Starting from the baseline results, we first explored the hyperparameter space
manually, to develop an intuition regarding the effect of each hyperparameter
on the performance.

We then performed a hyperparameter search for MONet. We ran a full search,
resulting in 36 runs. Because of the high number of runs, we decided to use a sin-
gle seed. The parameters are listed in Table 1. Those that are not listed were kept
unchanged. All combinations of parameters are tested, but foreground sigma

and background sigma have been changed in pairs, so that when the foreground
sigma is 0.05, the background sigma is 0.03 and when foreground sigma is 0.5,
background sigma is 0.3 to keep consistent weights of the reconstruction loss.

Some analysis on the results of these models can be seen in Appendix E.2,
where we can see how the parameters have little to no impact on the overall
performance of the model. What proved to be most effective was reducing the
number of skip connections in the U-Net and using a small sigma for the loss
function. However, these results are not very conclusive, as a small number of
skip connections is actually just increasing the ARI slightly by reconstructing
bigger patches of objects in the slots and not actually separating them correctly.
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Fig. 8: Results (top row: ARI; bottom row: MSE) from the hyperparameter search for
MONet. Although increasing gamma or foreground sigma in the loss function success-
fully deteriorates reconstruction performance (MSE), they are not sufficient to improve
the ARI (in fact, the increase of foreground sigma actually decreases the ARI). A
smaller number of skip connections also achieves the desired higher MSE, which cor-
responds to higher ARI only for small values of sigma. Often, having big values for
gamma and sigma results in trends opposing the desired ones in terms of ARI.
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Table 1: Hyperparameter search for MONet.

Parameter Value(s)

foreground sigma 0.05, 0.5
background sigma 0.03, 0.3

gamma 0.05, 1, 5
latent size 64

latent space MLP size 128
decoder input channels 66

number of skip connections in U-Net 0, 3, 5
dataset CLEVR, Multi-dSprites

E.3 Representation bottleneck study

The representation bottleneck study was done by changing the latent space of
both MONet and Slot Attention with 2 seeds and without changing any other
parameter, resulting in 32 runs. The latent sizes tested are shown in Table 2.
The findings are summarized in the main text of the paper.

Table 2: Latent space sizes tested in the study for each of the two models.

MONet
Slot

Attention

8 32
16 64
32 128
64 256
128 512

E.4 Improving Slot Attention

We tried to increase the size of the encoder and decoder architecture as much as
possible, while being reasonable regarding training time and GPU memory. We
tested several architectures, with the objective of improving the overall recon-
struction quality by reducing the blurriness. We quickly realised that we needed
a very deep architecture, therefore, we opted to use residual layers. The final
architecture managed to achieve the best results when averaged over 3 different
seeds. Each layer is a stack of two convolutional layers, with Leaky ReLU acti-
vation functions, a skip connection and we also employ the re-zero strategy [2].
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We increased the latent size to 512, used upscaling in the encoder and down-
scaling in the decoder. We fixed the broadcast size of the decoder to 32. We
used a stack of 16 residual blocks. The architecture of the encoder is described
in Table 3, and the decoder is symmetrical (starting from 256 channels going
down and instead of downscaling we have upscaling). To map from the input
number of channels to the desired ones we use an additional convolutional layer,
the same for the output channels. We did not experiment with the number of
iterations that the Slot Attention Module performs, but it would be interesting
to understand whether this parameter is very influential in natural scenes.

Table 3: Final encoder used for the Slot Attention model that obtained the best results
in terms of both ARI and MSE. Residual Blocks always have 2 convolutions and use
ReZero [2], two downscaling operations are used for the CLEVR dataset, while one for
Multi-dSprites. The decoder is perfectly simmetrical to this structure.

Name Number of channels Activation/ Comment

Residual Block 64 Leaky ReLU
Residual Block 64 Leaky ReLU
Residual Block 64 Leaky ReLU
Residual Block 64 Leaky ReLU

Downscaling Only for CLEVR
Residual Block 64 Leaky ReLU
Residual Block 64 Leaky ReLU
Residual Block 64 Leaky ReLU
Residual Block 64 Leaky ReLU

Downscaling
Residual Block 128 Leaky ReLU
Residual Block 128 Leaky ReLU
Residual Block 128 Leaky ReLU
Residual Block 128 Leaky ReLU
Residual Block 256 Leaky ReLU
Residual Block 256 Leaky ReLU
Residual Block 256 Leaky ReLU
Residual Block 256 Leaky ReLU
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F Additional results

Fig. 9: Pearson’s correlation coefficient for all runs, grouped by dataset and showing the
different combinations of matching and downstream model. The correlation between
downstream model’s performance and the ARI (↑) and MSE (↓) metrics shows that ARI
is a strongest indicator of good representation quality when the object-centric models
are being trained on data with complex texture. Difference in correlation between
different matching methods and downstream models is again to be attributed to the
poor mask generation quality, which makes mask matching very challenging.
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Fig. 10: Comparison of the downstream performance for all combinations of slot-object
matching and model type (results on from the test set, downstream models trained on
the validation set). We notice how accuracy (↑) and R2 (↑) both increase significantly for
both MONet models when using loss matching compared to mask matching (especially
for numerical features). This is expected, as the masks generated by MONet suffer
substantially from hypersegmentation, which makes mask-matching a very unstable
way to pair slots with the correct object. Instead, Slot Attention manages to generate
more accurate masks, which results in more consistent performance between mask and
loss matching methods.
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Fig. 11: Scatter plots to inspect correlation between downstream performance, and
ARI (↑) and MSE (↓). The color shows the different models, which clearly display
distinct patterns. A visual inspection shows that there is very little correlation between
downstream performance and MSE. Only loss matching is shown here.
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G Qualitative results

(a) Baseline MONet

(b) Best result MONet

(c) Baseline Slot Attention

(d) Best result Slot Attention

Fig. 12: Qualitative results for the separation performance of the models in the com-
parative study on Multi-dSprites. From left to right in all subfigures: (top) input, final
reconstruction, reconstruction for each of the six slots (no predicted mask is applied
here, only the visual appearance part of the reconstruction is shown), (bottom) mask
for each of the six slots. Here the difference between the two versions of Slot Attention
is even more noticeable, and we can see how MONet is blurring the masks. However,
MONet never manages to reconstruct the correct visual appearance, even when a more
accurate shape of the objects is being predicted by the attention module. Balancing
visual appearance and shape is much more challenging in MONet.
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(a) Baseline MONet

(b) Best result MONet

(c) Baseline Slot Attention

(d) Best result Slot Attention

Fig. 13: Qualitative results for the separation performance of the models in the com-
parative study on CLEVR. From left to right in all subfigures: (top) input, final recon-
struction, reconstruction for each of the six slots (no predicted mask is applied here,
only the visual appearance part of the reconstruction is shown), (bottom) mask for
each of the six slots. The masks on the improved Slot Attention start to include more
of the background for each object. In both baseline and best result, Slot Attention
isolates each object in a distinct slot, rarely over-segmenting the input, a stark dif-
ference when comparing to Multi-dSprites. For MONet, it manages to perform better
in CLEVR than Multi-dSprites, however, the best result is still hypersegmenting the
input and not blurring it. Overall, MONet cannot reconstruct the visual appearance
using the VAE, and leaves all the heavy lifting to the attention module.


