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Abstract. We propose a self-supervised algorithm to learn representa-
tions from egocentric video data. Given the uncurated nature of long-form
continuous videos, learning effective representations require focusing on
moments in time when interactions take place. To achieve this, we lever-
age audio signals to identify moments of likely interactions and also
propose a novel self-supervised objective that learns from audible state
changes caused by interactions. We validate these contributions on two
large-scale egocentric datasets, EPIC-Kitchens-100 and Ego4D, and show
improvements on downstream task of action recognition.

1 Introduction
Recent successes in self-supervised learning (SSL) [22, 4, 15, 12] has brought into
question the need for human annotations. Current approaches learn from static
images which lack temporal information and are unable to learn about state
changes. Here, videos can be helpful to learn rich representations in self-supervised
manner [26, 14, 16, 27, 34, 13, 9]. However, learning representations from videos
can be quite challenging. The first challenge is choosing the right SSL loss.
Approaches using only video modality [33, 25] or both audio-video modality [1,
20, 27, 23, 19] have attempted to learn representations but are not sensitive to
state changes. The second challenge is that current video-based SSL approaches
exploit single-action, curated video datasets, such as Kinetics [3]. This is in
contrast to the predominantly untrimmed, real-world, egocentric data [5, 6, 24,
18, 30, 8, 11] which contain multiple, fine-grained actions [35, 29, 7, 17, 21]. Unlike
action-centric datasets, learning from untrimmed videos is challenging as they
contain long periods without interactions, which aren’t useful for training.

Interactions like opening a fridge or placing a pan on stove create clear and
consistent sound signatures due to the physical interaction between objects.
To capture these right moments when actual interactions occur, audio can be
used to train on interaction-rich portions of the untrimmed videos. Prior work
on audio-visual correspondence (AVC) [28, 2, 20] still favors invariance which is
not informative of the changes happening over time. To this end, we introduce
RepLAI – Representation Learning from Audible Interactions, a self-supervised
algorithm for representation learning from videos of audible interactions. RepLAI
uses the audio signals to: (1) identify moments in time that are conducive to
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Fig. 1: Overview of RepLAI. RepLAI (A) seeks to learn audio and visual encoders
(fA and fV ) by detecting and training on moments of interaction (MoI) present in
untrimmed videos and solving two tasks: audio-visual correspondence AVC (B) and audio
identifiable state changes AStC (C).

self-supervised learning and (2) to learn representations that focus on the visual
state changes caused by audible interactions.

2 RepLAI

Given a dataset D = {(vi, ai)Ni=1} containing N long (untrimmed) audio-visual
streams, our goal is to learn visual and audio encoders, denoted fV and fA.
An overview of the proposed approach is depicted in Fig. 1. For each sample
(v, a) ∈ D, we search for moments of interaction (MoI) using the audio stream, and
extract short audio and visual clips around these MoI. These trimmed clips are
then encoded into a vectorized representation using fV and fA. The whole system
is trained to optimize two self-supervised losses – audio-visual correspondence
LAVC, and a novel objective that learns from audible state changes LAStC.
Audio-driven detection of moments of interaction. Audio signals are
particularly informative of moments of interaction. To complete day-to-day activ-
ities, we physically interact with objects in our environments. These interactions
typically produce distinct audio patterns - short bursts of energy that span
all frequencies. To locate these patterns, we represent the audio as a log mel
spectrogram where moments of interaction appear as vertical edges, and search
for robust local maxima in the total energy (summed over all frequencies). To
avoid weak local maxima, we ignore energy peaks with small prominence (lower
than 1)3. We also ignore low prominence peaks found less than 50ms apart from
other ones. Once detected, short clips around the moments of interaction are
collected into a dataset DMoI, and used for training.
Learning from audible state changes Physical interactions often cause both
state changes in the environment and distinct audio signals. To leverage this
natural co-occurrence, we propose a self-supervised task that seeks to associate the
audio with changes in the visual state during a moment of interaction. Specifically,
the audible state change (AStC) loss seeks to (1) increase the probability of

3
Peak prominence is defined as the size of the value range in a small window around the peak.
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associating the audio with the visual change in the forward (i.e. correct) direction,
(2) decrease the probability of associating the audio with the visual change in
the backward (i.e. incorrect) direction

LAStC = Evt,at∈DMoI

[
− log

(
pfrwd(vt, at)

)
− log

(
1− pbkwd(vt, at)

)]
. (1)

The probabilities (pfrwd, pbkwd) are computed from cross-modal similarities

pfrwd(vt, at) = σ
(
sim

(
∆vfrwd

t ,at

)
/τ

)
; pbkwd(vt, at) = σ

(
sim

(
∆vbkwd

t ,at

)
/τ

)
,

(2)
where τ = 0.2 is a temperature hyper-parameter, and σ denotes the sigmoid

function. Audio representations (at) are obtained by encoding the trimmed audio
clips at via the audio encoder fA (shared across all objectives) and an MLP
projection hAStCA . State change representations (∆vfrwd

t , ∆vbkwd
t ) are computed

by considering two non-overlapping visual clips for each moment t at timestamps
t− δ and t+ δ. Each clip is encoded via the visual encoder fV and a projection
MLP head hAStCV . Forward and backward state changes are then represented as

∆vfrwd
t = hAStC

V ◦fV (vt+δ)−hAStC
V ◦fV (vt−δ); ∆vbkwd

t = hAStC
V ◦fV (vt−δ)−hAStC

V ◦fV (vt+δ).
(3)

Optimizing the loss of Eq. 1 requires the audio representation at to be
aligned with the visual change ∆vfrwd

t that took place, while different from the
hypothetical backward state change ∆vbkwd

t .
Learning from audio-visual correspondences [28, 2, 20] Audio-visual corre-
spondence (AVC) seeks to align corresponding visual and audio clips into a common
feature space. In particular, following [20, 31], audio-visual correspondence is
established by minimizing a symmetric cross-modal InfoMax loss

LAVC = Evi,ai∼D

[
− log

esim(vi,ai)/τ∑
j e

sim(vi,aj)/τ
− log

esim(vi,ai)/τ∑
j e

sim(vj ,ai)/τ

]
, (4)

where τ = 0.07 is a temperature hyper-parameter and sim the cosine similarity.
For readability, we absorbed the audio and visual projection MLP heads (hAVCA

and hAVCV ) within sim(·, ·), and illustrate their usage in Fig. 1.
Training: Representations learned through AVC are biased towards static con-
cepts while those learned through AStC are more sensitive to dynamic concepts.
Since both are useful, representations are trained with L = LAVC + LAStC.

3 Experiments
Experimental setup. Following prior work [20], we use an R(2+1)D video en-
coder [32] with depth 18 and a 10-layer 2D CNN as the audio encoder. Two video
clips of duration 0.5s are extracted around MoI at 16 FPS, and separated by a
0.2s gap. We extract audio clips of 2s at 44.1kHz, downsample them to 16kHz
and convert the mono signal to a log mel spectrogram with 80 frequency bands
and 128 temporal frames. We train and evaluate on EPIC-Kitchens-100 [6] and
Ego4D [11] using the Forecasting and Hand-Object interaction subset. Models
are trained with stochastic gradient descent for 100 epochs with a batch size of
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EPIC-Kitchens-100 Ego4d

Method LAVC LAStC MoI
Sampling

AVID
Init [20]

Top1 Acc ↑ Top5 Acc ↑ Top1 Acc ↑
Verb Noun Verb Noun Verb Noun

(1) Random 20.38 4.96 64.75 19.83 17.4 7.7
(2) AVID [20] ✓ 26.62 9.00 69.79 25.50 18.3 10.7
(3) RepLAI w/o AVC ✓ ✓ ✓ 29.92 10.46 70.58 29.00 20.3 12.4
(4) RepLAI w/o AStC ✓ ✓ ✓ 29.29 9.67 73.33 29.54 21.1 13.5
(5) RepLAI w/o MoI ✓ ✓ ✓ 28.71 8.33 73.17 27.29 19.8 11.2
(6) RepLAI (scratch) ✓ ✓ ✓ 25.75 8.12 71.25 27.29 22.2 14.1
(7) RepLAI ✓ ✓ ✓ ✓ 31.71 11.25 73.54 30.54 22.5 14.7

Table 1: Action recognition on EPIC-Kitchens-100 and Ego4D.
128, a learning rate of 0.005 and a momentum of 0.9. For Ego4D, we use a batch
size of 512 with a learning rate of 0.05. After self-supervised pre-training, the
models are evaluated on action recognition (verb and noun) by training a linear
classifier on a small annotated dataset.

Baselines and ablations. We consider various baselines as well as ablated ver-
sions of RepLAI. Random represents an untrained (randomly initialized) model,
AVID [20] is a model pre-trained on 2M audio-visual pairs from AudioSet [10]
with only audio-visual correspondence. The full method RepLAI is initialized
by AVID weights. Other ablations include our method trained without AVID
initialization (RepLAI from scratch), trained with only AVC (RepLAI w/o AStC ),
only state change loss (RepLAI w/o AVC ), and trained on random moments in
time (RepLAI w/o MoI ).

Discussion of Results
RepLAI enhances large-scale AVC driven approaches. Comparing AVID, Re-
pLAI (Scratch) and RepLAI in Tab. 1, it is clear that RepLAI enhances large-scale
AVID pre-training by significant margins on all the downstream tasks. We also see
that pre-training can be useful when training on the smaller EPIC-Kitchens-100,
but less so on Ego-4D as the latter already contains a large diversity of scenes.

Detecting moments of interaction (MoI) helps representation learning. To es-
tablish the benefits of our audio-driven MoI detection algorithm, we compared
RepLAI with RepLAI w/o MoI. As can be seen in Tab. 1, sampling clips around
MoI leads to significantly better representations.

AVC and AStC are complementary. Comparing rows (3) and (4) to the full model
in row (7) of Tab. 1 shows that both terms, AVC and AStC, are complementary
to each other, as AVC focuses on learning visual representations of the sounding
object present in the video, while AStC helps the model to differentiate between
visual representations of before and after state change interactions.

4 Conclusion
We propose an audio-driven self-supervised method for learning representations
of egocentric videos. By learning to focus on moments of interaction (MoI), strong
representations can be learned for untrimmed datasets. Moreover, by learning to
focus on the changes in the state of an environment caused by agents interacting
with the world, state-aware representations can be learned which are particularly
useful for egocentric downstream tasks.
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